Regulator of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling. The N termini of some RGS4-family proteins provide receptor specificity and also contain an N-end rule determinant that results in ubiquitylation and decreased protein expression. The relevance of these mechanisms to other RGS proteins is not fully understood. Thus we examined function, receptor specificity, and expression of R4 subfamily RGS proteins (RGS2, -3, -4, -5, and -8). Although the N terminus plays a key role in protein stability in human embryonic kidney (HEK) 293 cells, we were unable to demonstrate specificity of RGS2, -3, -4, -5, or -8 for muscarinic receptors (M 1 , M 3 , and M 5 ). However, cellular RGS activity (8 ϭ 3 Ͼ 2) was strongly correlated with expression; RGS4 and -5 had minimal expression and activity. Stabilizing mutations of RGS4 and -5 (C2S) enhanced expression and function with a greater influence on RGS4 than on RGS5. We were surprised to find that a predicted destabilizing mutation in RGS8 (A2C) did not markedly affect expression and had no effect on function. In contrast, a destabilizing mutation in RGS2 (RGS2-Q2L) recently identified as a rare N-terminal genetic variant in a Japanese hypertensive cohort (J Hypertens 23:1497-1505, 2005) showed significantly reduced expression and inhibition of angiotensin II (AT 1 ) receptor-stimulated accumulation of inositol phosphates. We were surprised to find that RGS2-Q2R, also predicted to be destabilizing, showed nearly normal expression and function. Thus, proteasomal regulation of RGS expression in HEK293 cells strongly controls RGS function and a novel RGS2 mutation with decreased protein expression could be relevant to the pathophysiology of hypertension in humans.
Problem statementDuring especially the past two decades many discoveries in biolog ical sciences, and in particular at the molecular and genetic level, have greatly impacted on our knowledge and understanding of drug action and have helped to develop new drugs and therapeutic strategies. Furthermore, many exciting new drugs acting via novel pharmacological mechanisms are expected to be in clinical use in the not too distant future.
Scope and contents of reviewIn this educational review, these concepts are explained and their relevance illustrated by examples of drugs used commonly in the clinical setting, with special reference to the pharmacology of G-protein-coupled receptors. The review also addresses the basic theoretical concepts of full and partial agonism, neutral antagonism, inverse agonism and protean and ligand-selective agonism, and the relevance of these concepts in current rational drug therapy. Moreover, the mechanisms whereby receptor signalling (and eventually response to drugs) is fine-tuned, such as receptor promiscuity, agonist-directed trafficking of receptor signalling, receptor trafficking, receptor 'cross-talk' and regulators of G-protein signalling (RGSs) are discussed, from theory to proposed therapeutic implications.
ConclusionsIt is concluded that the understanding of molecular receptor and signal transduction pharmacology enables clinicians to improve their effective implementation of current and future pharmacotherapy, ultimately enhancing the quality of life of their patients.
This work reviews the four basic structural types of homoisoflavanones. The relationships between the various structures of homoisoflavanones and their plant origins, ethnobotany and biological activities are put into perspective.
IntroductionPropolis is a complex resinous substance manufactured by honeybees. It consists of exudates collected from the parts of various plant species, substances secreted from bee metabolism, and materials which are introduced during propolis elaboration. [1][2][3] In general, it is composed of 50% resin and vegetable balsam, 30% wax, 10% essential and aromatic oils, 5% pollen and 5% various other organic substances including debris. Exudates collected from leaves and leaf buds, mucilages, gums, resins and latices contribute the most to the constituents of propolis.2 Of these, the largest group of compounds is the flavonoid pigments, such as luteolin, eriodictyol, galangin and quercetin. Flavonoids are ubiquitous in the plant kingdom, occurring naturally in foods and at concentrations of <0.1-0.7% in propolis.2,4-7 Other non-flavonoid constituents include caffeic acids and their esters (2-20%), such as caffeic acid phenethyl ester (CAPE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.