The Volume Operator plays a crucial role in the definition of the quantum dynamics of Loop Quantum Gravity (LQG). Efficient calculations for dynamical problems of LQG can therefore be performed only if one has sufficient control over the volume spectrum. While closed formulas for the matrix elements are currently available in the literature, these are complicated polynomials in 6j symbols which in turn are given in terms of Racah's formula which is too complicated in order to perform even numerical calculations for the semiclassically important regime of large spins. Hence, so far not even numerically the spectrum could be accessed.In this article we demonstrate that by means of the Elliot -Biedenharn identity one can get rid of all the 6j symbols for any valence of the gauge invariant vertex, thus immensely reducing the computational effort. We use the resulting compact formula to study numerically the spectrum of the gauge invariant 4 -vertex.The techniques derived in this paper could be of use also for the analysis of spin -spin interaction Hamiltonians of many -particle problems in atomic and nuclear physics. * jbrunnemann@perimeterinstitute.ca † tthiemann@perimeterinstitute.ca 1
Loop quantum cosmology (LQC), mainly due to Bojowald, is not the cosmological sector of loop quantum gravity (LQG). Rather, LQC consists of a truncation of the phase space of classical general relativity to spatially homogeneous situations which is then quantized by the methods of LQG. Thus, LQC is a quantum-mechanical toy model (finite number of degrees of freedom) for LQG (a genuine QFT with an infinite number of degrees of freedom) which provides important consistency checks. However, it is a non-trivial question whether the predictions of LQC are robust after switching on the inhomogeneous fluctuations present in full LQG. Two of the most spectacular findings of LQC are that: (1) the inverse scale factor is bounded from above on zero-volume eigenstates which hints at the avoidance of the local curvature singularity and (2) the quantum Einstein equations are nonsingular which hints at the avoidance of the global initial singularity. This rests on (1) a key technique developed for LQG and (2) the fact that there are no inhomogeneous excitations. We display the result of a calculation for LQG which proves that the (analogon of the) inverse scale factor, while densely defined, is not bounded from above on zero-volume eigenstates. Thus, in full LQG, if curvature singularity avoidance is realized, then not in this simple way. In fact, it turns out that the boundedness of the inverse scale factor is neither necessary nor sufficient for the curvature singularity avoidance and that non-singular evolution equations are neither necessary nor sufficient for initial singularity avoidance because none of these criteria are formulated in terms of observable quantities. After outlining what would be required, we present the results of a calculation for LQG which could be a first indication that our criteria at least for curvature singularity avoidance are satisfied in LQG.
Loop quantum cosmology (LQC), mainly due to Bojowald, is not the cosmological sector of loop quantum gravity (LQG). Rather, LQC consists of a truncation of the phase space of classical general relativity to spatially homogeneous situations which is then quantized by the methods of LQG. Thus, LQC is a quantum-mechanical toy model (finite number of degrees of freedom) for LQG (a genuine QFT with an infinite number of degrees of freedom) which provides important consistency checks. However, it is a non-trivial question whether the predictions of LQC are robust after switching on the inhomogeneous fluctuations present in full LQG. Two of the most spectacular findings of LQC are that: (1) the inverse scale factor is bounded from above on zero-volume eigenstates which hints at the avoidance of the local curvature singularity and (2) the quantum Einstein equations are nonsingular which hints at the avoidance of the global initial singularity. This rests on (1) a key technique developed for LQG and (2) the fact that there are no inhomogeneous excitations. We display the result of a calculation for LQG which proves that the (analogon of the) inverse scale factor, while densely defined, is not bounded from above on zero-volume eigenstates. Thus, in full LQG, if curvature singularity avoidance is realized, then not in this simple way. In fact, it turns out that the boundedness of the inverse scale factor is neither necessary nor sufficient for the curvature singularity avoidance and that non-singular evolution equations are neither necessary nor sufficient for initial singularity avoidance because none of these criteria are formulated in terms of observable quantities. After outlining what would be required, we present the results of a calculation for LQG which could be a first indication that our criteria at least for curvature singularity avoidance are satisfied in LQG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.