Alcohol dependence is a typical example of a complex trait that is governed by several genes and for which the mode of inheritance is unknown. We analyzed the microsatellite markers and the Affymetrix single-nucleotide polymorphisms (SNPs) for a subset of the Collaborative Study on the Genetics of Alcoholism family sample, 93 pedigrees of Caucasian ancestry comprising 919 persons, 390 of whom are affected according to DSM III-R and Feighner criteria. In particular, we performed parametric single-marker linkage analysis using MLINK of the LINKAGE package (for the microsatellite data), as well as multipoint MOD-score analysis with GENEHUNTER-MODSCORE (for the microsatellite and SNP data). By use of two liability classes, different penetrances were assigned to males and females. In order to investigate parent-of-origin effects, we calculated MOD scores under trait models with and without imprinting. In addition, for the microsatellite data, the MOD-score analysis was performed with sex-averaged as well as sex-specific maps. The highest linkage peaks were obtained on chromosomes 1, 2, 7, 10, 12, 13, 15, and 21. There was evidence for paternal imprinting at the loci on chromosomes 2, 10, 12, 13, 15, and 21. A tendency to maternal imprinting was observed at two loci on chromosome 7. Our findings underscore the fact that an adequate modeling of the genotype-phenotype relation is crucial for the genetic mapping of a complex trait.
The new version of GENEHUNTER-MODSCORE can be downloaded from the following website: http://www.staff.uni-marburg.de/~strauchk/software.html
We have optimized and parallelized the GENEHUNTER-TWOLOCUS program that allows to perform linkage analysis with two trait loci in the multimarker context. The optimization of the serial program, before parallelization, results in a speedup of a factor of more than 10. The parallelization affects the twolocus-score calculation, which is predominant in terms of computation time. We obtain perfect speedup, that is, the computation time decreases exactly by a factor of the number of processors. In addition, twolocus LOD and NPL scores are now calculated for varying genetic positions of both disease loci, not just one locus varied and the position of the other disease locus fixed, as before. This results in easily interpretable 3-D plots. We have reanalyzed a pedigree with hypercholesterolemia using our new version of GENEHUNTER-TWOLOCUS. Whereas originally, two individuals had to be discarded due to excessive computation-time demands, the entire 17-bit pedigree could now be analyzed as a whole. We obtain a two-trait-locus LOD score of 5.49 under a multiplicative model, compared to LOD scores of 3.08 and 2.87 under a heterogeneity and additive model, respectively. This further increases evidence for linkage to both 1p36.1 -p35 and 13q22 -q32 regions, and corroborates the hypothesis that the two genes act in a multiplicative way on LDL cholesterol level. Furthermore, we compare the computation times for two-traitlocus analysis needed by the programs GENEHUNTER-TWOLOCUS, TLINKAGE, and SUPERLINK. Altogether, our algorithmic improvements of GENEHUNTER-TWOLOCUS allow researchers to analyze complex diseases under realistic two-trait-locus models with pedigrees of reasonable size and using many markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.