BackgroundGlioblastoma (GBM) is a tumor of the central nervous system. After surgical removal and standard therapy, recurrence of tumors is observed within 6–9 months because of the high migratory behavior and the infiltrative growth of cells. Here, we investigated whether carnosine (β-alanine-l-histidine), which has an inhibitory effect on glioblastoma proliferation, may on the opposite promote invasion as proposed by the so-called “go-or-grow concept”.MethodsCell viability of nine patient derived primary (isocitrate dehydrogenase wildtype; IDH1R132H non mutant) glioblastoma cell cultures and of eleven patient derived fibroblast cultures was determined by measuring ATP in cell lysates and dehydrogenase activity after incubation with 0, 50 or 75 mM carnosine for 48 h. Using the glioblastoma cell line T98G, patient derived glioblastoma cells and fibroblasts, a co-culture model was developed using 12 well plates and cloning rings, placing glioblastoma cells inside and fibroblasts outside the ring. After cultivation in the presence of carnosine, the number of colonies and the size of the tumor cell occupied area were determined.ResultsIn 48 h single cultures of fibroblasts and tumor cells, 50 and 75 mM carnosine reduced ATP in cell lysates and dehydrogenase activity when compared to the corresponding untreated control cells. Co-culture experiments revealed that after 4 week exposure to carnosine the number of T98G tumor cell colonies within the fibroblast layer and the area occupied by tumor cells was reduced with increasing concentrations of carnosine. Although primary cultured tumor cells did not form colonies in the absence of carnosine, they were eliminated from the co-culture by cell death and did not build colonies under the influence of carnosine, whereas fibroblasts survived and were healthy.ConclusionsOur results demonstrate that the anti-proliferative effect of carnosine is not accompanied by an induction of cell migration. Instead, the dipeptide is able to prevent colony formation and selectively eliminates tumor cells in a co-culture with fibroblasts.Electronic supplementary materialThe online version of this article (10.1186/s12935-018-0611-2) contains supplementary material, which is available to authorized users.
Background Meningioma accounts for more than 35% of all diagnosed brain tumors of the central nervous system and, moreover, it is the most common benign recipient of tumor-to-tumor metastasis. Several cases with tumor-to-meningioma metastasis by breast, lung, and intestinal cancer have been described before.
Case description The case of a patient with a longstanding history of multiple meningiomas (n = 4) that suddenly became symptomatic and progressive in size is presented. Following extirpation of the two largest meningiomas, a histological examination revealed two separate tumor-to-meningioma metastases of clear cell renal cell carcinoma that was undiagnosed before. Post-surgical computed tomography scan then confirmed tumor-suspect lesions in both kidneys. After recovery and rehabilitation, adjuvant radio-chemo-therapy was applied according to protocols for kidney cancer. No other tumor-to-tumor-suspect event occurred since then for the remaining two meningiomas.
Conclusion Review of literature and our case strengthens the idea of meningioma as a favorable premetastatic niche. Considering that the patient lived with a stable disease for many years, a sudden progress of tumor size in association with neurological deterioration was highly suspected for malign involvement, including the possibility of tumor-to-tumor metastasis. Physicians should be aware about this phenomenon and treat patients accordingly to the underlying disease.
Aim: The naturally occurring dipeptide carnosine (CAR) has been considered for glioblastoma therapy. As CAR also protects against ionizing irradiation (IR), we investigated whether it may counteract standard therapy consisting of postsurgery IR and treatment with temozolomide (TMZ). Materials & methods: Four isocitrate dehydrogenase-wildtype primary cell cultures were exposed to different doses of IR and different concentrations of TMZ and CAR. After exposure, viability under the different conditions and combinations of them was determined. Results: All cultures responded to treatment with TMZ and IR with reduced viability. CAR further decreased viability when TMZ and IR were combined. Conclusion: Treatment with CAR does not counteract glioblastoma standard therapy. As the dipeptide also protects nontumor cells from IR, it may reduce deleterious side effects of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.