In order to investigate the propionate‐degrading community of agricultural biogas plants, four propionate‐degrading consortia (Ap1a, N12, G12, and Wp2a) were established from different biogas plants which were fed with renewable resources. The consortia were cultivated in a batch for a period of 2–4 years and then analyzed in an 8‐week batch experiment for microbial succession during propionate degradation. Community shifts showed considerable propagation of Syntrophobacter sulfatireducens, Cryptanaerobacter sp./Pelotomaculum sp., and “Candidatus Cloacamonas sp.” in the course of decreasing propionate concentration. Methanogenic species belonged mainly to the genera Methanosarcina, Methanosaeta, and Methanoculleus. Due to the prevalent presence of the syntrophic acetate‐oxidizing species Tepidanaerobacter acetatoxydans and potentially autotrophic homoacetogenic bacteria (Moorella sp., Thermacetogenium sp.), a theoretical involvement of syntrophic acetate oxidation and autotrophic homoacetogenesis in stable and efficient propionate degradation was indicated. Considering theoretical Gibbs free energy values at different hydrogen partial pressures, it is noticeable that syntrophic acetate oxidation and autotrophic homoacetogenesis have the potential to counterbalance adverse hydrogen partial pressure fluctuations, stabilizing most probably continuous and stable propionate degradation.
A synthetic DNA fragment containing primer binding sites for the quantification of ten different microbial groups was constructed and evaluated as a reliable enumeration standard for quantitative real-time PCR (qPCR) analyses. This approach has been exemplary verified for the quantification of several methanogenic orders and families in a series of samples drawn from a mesophilic biogas plant. Furthermore, the total amounts of bacteria as well as the number of sulfate-reducing and propionic acid bacteria as potential methanogenic interaction partners were successfully determined. The obtained results indicated a highly dynamic microbial community structure which was distinctly affected by the organic loading rate, the substrate selection, and the amount of free volatile fatty acids in the fermenter. Methanosarcinales was the most predominant methanogenic order during the 3 months of observation despite fluctuating process conditions. During all trials, the modified quantification standard indicated a maximum of reproducibility and efficiency, enabling this method to open up a wide range of novel application options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.