A signal-to-noise ratio (SNR) analysis is presented for optical coherence tomography (OCT) signals in which time-domain performance is compared with that of the spectral domain. A significant SNR gain of several hundredfold is found for acquisition in the spectral domain. The SNR benefit is demonstrated experimentally in a hybrid time-domain-spectral-domain OCT system.
Optical coherence tomography (OCT) is a new method that could aid analysis of neurodegeneration in multiple sclerosis (MS) by capturing thinning of the retinal nerve fibre layer (RNFL). Meta-analyses of data for time domain OCT show RNFL thinning of 20.38 microm (95% CI 17.91-22.86, n=2063, p<0.0001) after optic neuritis in MS, and of 7.08 microm (5.52-8.65, n=3154, p<0.0001) in MS without optic neuritis. The estimated RNFL thinning in patients with MS is greater than the extent expected in normal ageing, probably because of retrograde trans-synaptic degeneration and progressive loss of retinal ganglion cells, in addition to the more pronounced thinning caused by optic neuritis if present. RNFL thickness correlates with visual and neurological functioning as well as with paraclinical data. Developments that could improve understanding of the relation between structure and function in MS pathophysiology include spectral or Fourier domain OCT technology, polarisation-sensitive OCT, fluorescence labelling, structural assessment of action-potential propagation, and segmentation algorithms allowing quantitative assessment of retinal layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.