In this study, recurrent networks to downscale meteorological fields of the ERA-40 re-analysis dataset with focus on the meso-scale water balance were investigated. Therefore two types of recurrent neural networks were used. The first approach is a coupling between a recurrent neural network and a distributed watershed model and the second a nonlinear autoregressive with exogenous inputs (NARX) network, which directly predicted the component of the water balance. The approaches were deployed for a meso-scale catchment area in the Free State of Saxony, Germany. The results show that the coupled approach did not perform as well as the NARX network. But the meteorological output of the coupled approach already reaches an adequate quality. However the coupled model generates as input for the watershed model insufficient daily precipitation sums and not enough wet days were predicted. Hence the long-term annual cycle of the water balance could not be preserved with acceptable quality in contrary to the NARX approach. The residual storage change term indicates physical restrictions of the plausibility of the neural networks, whereas the physically based correlations among the components of the water balance were preserved more accurately by the coupled approach.
This study presents an extended version of a single site daily weather generator after Richardson. The model is driven by daily precipitation series derived by a first-order two-state Markov chain and considers the annual cycle of each meteorological variable. The evaluation of its performance was done by deploying its synthetic time series into the physical based hydrological model BROOK90. The weather generator was applied and tested for data from the Anchor Station at the Tharandt Forest, Germany. Additionally its results were compared to the output of another weather generator with spell-length approach for the precipitation series (LARS-WG). The comparison was distinguished into a meteorological and a hydrological part in terms of extremes, monthly and annual sums and averages. Extreme events could be preserved adequately by both models. Nevertheless a general underestimation of rare events was observed. Natural correlations between vapour pressure and minimum temperature could be conserved as well as annual cycles of the hydrological and meteorological regime. But the simulated spectrums of extremes, especially, of precipitation and temperature, are more limited than the observed spectrums. While LARS-WG already finds application in practice, the results show that the data derived from the presented weather generator is as useful and reliable as those from the established model for the simulation of the water balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.