SUMMARY Helicobacter pylori is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong. H. pylori infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of H. pylori.
Chronic hepatitis B virus (HBV) infection is H epatitis B virus (HBV) is a common noncyto-pathic DNA virus. Infection with HBV in adults results frequently in a self-limiting, acute hepatitis, which confers protective immunity and causes no further disease. In 10% of infected adults, HBV leads to a chronic infection. Chronic HBV infection is an important risk factor for the development of cirrhosis and hepatocellular carcinoma. Worldwide, 350 million people suffer from chronic HBV infection, and approximately 1 million people die annually from HBV-related liver disease. 1,2 T helper 1 type cytokines such as interferon ␥ (IFN-␥) and interleukin 2 are involved in cell-mediated immunity and play a crucial role in the protection against intracellular pathogens, including HBV. 3 In patients with an acute self-limiting HBV infection, a multispecific CD4 ϩ and CD8 ϩ T-cell response with a type 1 cytokine profile is important for control of the infection. 4 These multispecific T-cell responses are maintained for decades after clinical recovery. 5 In contrast, patients with a chronic HBV infection lack such a vigorous multispecific response. These patients have a weak or undetectable virus-specific T-cell response. 4 The precise mechanism responsible for this T-cell hyporesponsiveness or tolerance is still unknown. One scenario that has not been explored in relation to chronic HBV infection is the potential role of host-mediated immunosuppressive mechanisms that might be activated in the face of persistent antigenic exposure.
Dendritic cells (DC) play an important role in the induction of T-cell responses. We hypothesize that the hampered antiviral T-cell response in chronic hepatitis B patients is a result of impaired dendritic cell function. In this study, we compared the number, phenotype and functionality of two important blood precursor DC, myeloid DC (mDC) and plasmacytoid DC (pDC), of chronic hepatitis B patients with healthy volunteers. No differences in percentages of mDC and pDC in peripheral blood mononuclear cells were observed between chronic hepatitis B patients and healthy controls. The allostimulatory capacity of isolated and in vitro matured mDC, but not of pDC, was significantly decreased in patients compared to controls. Accordingly, a decreased percentage of mDC expressing CD80 and CD86 was observed after maturation, compared to controls. In addition, mDC of patients showed a reduced capacity to produce tumor necrosis factor ␣ after a stimulus with synthetic double-stranded RNA and interferon ␥. Purified pDC from patients produced less interferon ␣, an important antiviral cytokine, in response to stimulation with Staphylococcus aureus Cowan strain I than pDC isolated from controls. In conclusion, mDC and pDC are functionally impaired in patients with chronic hepatitis B. This might be an important way by which hepatitis B virus evades an adequate immune response, leading to viral persistence and disease chronicity. (HEPATOLOGY 2004;40:738 -746.)
SUMMARY Whipple's disease is a rare infectious disease that can be fatal if left untreated. The disease is caused by infection with Tropheryma whipplei, a bacterium that may be more common than was initially assumed. Most patients present with nonspecific symptoms, and as routine cultivation of the bacterium is not feasible, it is difficult to diagnose this infection. On the other hand, due to the generic symptoms, infection with this bacterium is actually quite often in the differential diagnosis. The gold standard for diagnosis used to be periodic acid-Schiff (PAS) staining of duodenal biopsy specimens, but PAS staining has a poor specificity and sensitivity. The development of molecular techniques has resulted in more convenient methods for detecting T. whipplei infections, and this has greatly improved the diagnosis of this often missed infection. In addition, the molecular detection of T. whipplei has resulted in an increase in knowledge about its pathogenicity, and this review gives an overview of the new insights in epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of Tropheryma whipplei infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.