Interface theories based on Interface Automata (IA) are formalisms for the component-based specification of concurrent systems. Extensions of their basic synchronization mechanism permit the modelling of data, but are studied in more complex settings involving modal transition systems or do not abstract from internal computation. In this article, we show how de Alfaro and Henzinger's original IA theory can be conservatively extended by shared memory data, without sacrificing simplicity or imposing restrictions. Our extension IA for shared Memory (IAM) decorates transitions with pre-and post-conditions over algebraic expressions on shared variables, which are taken into account by IA's notion of component compatibility. Simplicity is preserved as IAM can be embedded into IA and, thus, accurately lifts IA's compatibility concept to shared memory. We also provide a ground semantics for IAM that demonstrates that our abstract handling of data within IA's open systems view is faithful to the standard treatment of data in closed systems.
Interface theories based on Interface Automata (IA) are formalisms for the component-based specification of concurrent systems. Extensions of their basic synchronization mechanism permit the modelling of data, but are studied in more complex settings involving modal transition systems or do not abstract from internal computation. In this article, we show how de Alfaro and Henzinger’s original IA theory can be conservatively extended by shared memory data, without sacrificing simplicity or imposing restrictions. Our extension IA for shared Memory (IAM) decorates transitions with pre- and post-conditions over algebraic expressions on shared variables, which are taken into account by IA’s notion of component compatibility. Simplicity is preserved as IAM can be embedded into IA and, thus, accurately lifts IA’s compatibility concept to shared memory. We also provide a ground semantics for IAM that demonstrates that our abstract handling of data within IA’s open systems view is faithful to the standard treatment of data in closed systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.