Fouling on filtration membranes is induced by the nonspecific interactions between the membrane surface and the foulants, and effectively hinders their efficient use in various applications. Here, we established a facile method for the coating of membrane surface with a dual stimuli-responsive antifouling microgel system enriched with a high polyzwitterion content. Different poly(sulfobetaine) (PSB) zwitterionic polymers with defined molecular weights and narrow dispersities were synthesized by reversible addition−fragmentation chain transfer (RAFT) polymerization and integrated onto poly(N-vinylcaprolactam) (PVCL) microgels via a controlled dosage of a cross-linker, adapting a precipitation polymerization technique to obtain a core−shell microstructure. Increasing the PSB macro-RAFT concentration resulted in a shift of both upper critical solution temperature and lower critical solution temperature toward higher temperatures. Cryogenic transmission electron microscopy at different temperatures suggested the formation of a core−shell morphology with a PVCL-rich core and a PSB-rich shell. On the other hand, the significant variations of different characteristic proton signals and reversible phase transitions of the microgel constituents were confirmed by temperature-dependent 1 H NMR studies. Utilizing a quartz crystal microbalance with dissipation monitoring, we have been able to observe and quantitatively describe the antipolyelectrolyte behavior of the zwitterionic microgels. The oscillation frequency of the sensor proved to change reversibly according to the variations of the NaCl concentration, showing, in fact, the effect of the interaction between the salt and the opposite charges present in the microgel deposited on the sensor. Poly(ethersulfone) membranes, chosen as the model surface, when functionalized with zwitterionic microgel coatings, displayed protein-repelling property, stimulated by different transition temperatures, and showed even better performances at increasing NaCl concentration. These kinds of stimuli-responsive zwitterionic microgel can act as temperature-triggered drug delivery systems and as potential coating materials to prevent bioadhesion and biofouling as well.
Catalytic hydrogenolysis of diaryl ethers is achieved by using ruthenium nanoparticles immobilized on an acidic supported ionic liquid phase (Ru@SILP-SO3H) as a multifunctional catalyst. The catalyst components are assembled through a molecular approach ensuring synergistic action of the metal and acid functions. The resulting catalyst is highly active for the hydrogenolysis of various diaryl ethers. For symmetric substrates such as diphenyl ether, hydrogenolysis is followed by full hydrodeoxygenation producing the corresponding cycloalkanes as the main products. For unsymmetric substrates, the cleavage of the C–O bond is regioselective and occurs adjacent to the unsubstituted phenyl ring. As hydrogenation of benzene is faster than hydrodeoxygenation over the Ru@SILP-SO3H catalyst, controlled mixtures of cyclohexane and substituted phenols are accessible with good selectivity. Application of Ru@SILP-SO3H catalyst in continuous-flow hydrogenolysis of 2-methoxy-4-methylphenoxybenzene is demonstrated with use of commercial equipment.
The stereoselectivity of a Diels–Alder reaction within the periphery of hierarchically assembled titanium(IV) helicates formed from mixtures of achiral, reactive and chiral, unreactive ligands was investigated in detail. Following the pathway of the chiral induction, the chiral ligands, solvents as well as substituents at the dienophile were carefully varied. Based on the results of the stoichiometric reaction, a secondary amine-catalyzed nitro-Michael reaction is performed as well which afforded reasonable diastereoselectivities.
The stereoselectivity of a Diels-Alder reaction within the periphery of hierarchically assembled titanium(IV) helicates formed from mixtures of achiral, reactive and chiral, unreactive ligands is investigated in detail. Following the pathway of the chiral induction, the chiral ligands, solvents as well as substituents at the dienophile are carefully varied. Based on the results of the stoichiometric reaction a secondary amine catalyzed nitro-Michael reaction is performed as well which affords reasonable diastereoselectivities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.