The emission of resonant radiation from temporal solitary waves—also known as dispersive wave generation—allows efficient energy transfer to far‐distant spectral domains. This coherent radiation can deliver large spectral densities at selected wavelengths once control over the individual soliton is achieved. Here, the concepts of few‐mode operation and local temperature tuning are combined for precise steering of cascaded dispersive wave generation in liquid‐core optical fibers. By exciting higher‐order TM and TE modes with femtosecond pulses at 1600 nm, the generation of two dispersive waves tunable by up to 33 nm K−1 through adjusting a selected part of the waveguide is observed. Sophisticated soliton‐driven nonlinear dynamics arising from thermally transitioning from anomalous to all‐normal dispersion with temperature changes of only a few Kelvin have been found, including soliton steering, soliton breakdown, and soliton post‐fission tuning. All experimental results are verified by nonlinear simulations and semi‐analytic phase‐matching calculations, overall providing a cost‐effective and practical toolbox for discovering unexplored states of light as well as for developing dynamically tunable broadband light sources.
We demonstrate real-time tailoring of supercontinuum generation in liquid-core fibers through altering the fiber’s dispersion profile via longitudinal temperature distributions. Experiments using a Peltier element array show extraordinary modification of the spectrum of higher-order modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.