MicroRNAs (miRNAs) expressed in endothelial cells (ECs) are powerful regulators of angiogenesis, which is essential for tumor growth and metastasis. Here, we demonstrated that miR-22 is preferentially and highly expressed in ECs, while its endothelial level is significantly downregulated in human non-small cell lung cancer (NSCLC) tissues when compared to matched nontumor lung tissues. This reduction of endothelial miR-22 is possibly induced by NSCLC cell-secreted interleukin-1β and subsequently activated transcription factor nuclear factor-κB. Endothelial miR-22 functions as a potent angiogenesis inhibitor that inhibits all of the key angiogenic activities of ECs and consequently NSCLC growth through directly targeting sirtuin 1 and fibroblast growth factor receptor 1 in ECs, leading to inactivation of AKT/mammalian target of rapamycin signaling. These findings provide insight into the molecular mechanisms of NSCLC angiogenesis and indicate that endothelial miR-22 represents a potential target for the future antiangiogenic treatment of NSCLC.
Prostate cancer is one of the most common malignancies, and there are a wide range of treatment options after diagnosis. Most prostate cancers behave in an indolent manner. However, a given sub-group has been shown to exhibit aggressive behavior; therefore, it is desirable to find novel prognostic and predictive (molecular) markers. THSD7A expression is significantly associated with unfavorable prognostic parameters in prostate cancer. FAK is overexpressed in several tumor types and is believed to play a role in tumor progression and metastasis. Furthermore, there is evidence that THSD7A might affect FAK-dependent signaling pathways. To examine whether THSD7A expression has an impact on the expression level of FAK in its unphosphorylated form, a total of 461 prostate cancers were analyzed by immunohistochemistry using tissue microarrays. THSD7A positivity and low FAK expression were associated with adverse pathological features. THSD7A positivity was significantly associated with high FAK expression. To our knowledge we are the first to show that THSD7A positivity is associated with high FAK expression in prostate cancer. This might be proof of the actual involvement of THSD7A in FAK-dependent signaling pathways. This is of special importance because THSD7A might also serve as a putative therapeutic target in cancer therapy.
MicroRNAs (miRNAs) expressed in endothelial cells (ECs) are powerful regulators of angiogenesis, which is essential for tumor growth and metastasis. Here, we demonstrated that miR-22-3p (miR-22) is preferentially and highly expressed in ECs, while its endothelial level is significantly down-regulated in human non-small cell lung cancer (NSCLC) tissues when compared to matched non-tumor lung tissues. This reduction of endothelial miR-22 is induced by NSCLC cell-secreted tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Endothelial miR-22 functions as a potent angiogenesis inhibitor that inhibits all the key angiogenic activities of ECs and consequently NSCLC growth through directly targeting sirtuin (SIRT) 1 and fibroblast growth factor receptor (FGFR) 1 in ECs, leading to inactivation of AKT/mammalian target of rapamycin (mTOR) signaling. These novel findings provide insight into the molecular mechanisms of NSCLC angiogenesis and indicate that endothelial miR-22 represents a potential target for the future anti-angiogenic treatment of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.