Right ventricular (RV) systolic function has an important role in the prediction of adverse outcomes, including mortality, in a wide range of cardiovascular (CV) conditions. Because of complex RV geometry and load dependency of the RV functional parameters, conventional echocardiographic parameters such as RV fractional area change (FAC) and tricuspid annular plane systolic excursion (TAPSE), have limited prognostic power in a large number of patients. RV longitudinal strain overcame the majority of these limitations, as it is angle-independent, less load-dependent, highly reproducible, and measure regional myocardial deformation. It has a high predictive value in patients with pulmonary hypertension, heart failure, congenital heart disease, ischemic heart disease, pulmonary embolism, cardiomyopathies, and valvular disease. It enables detection of subclinical RV damage even when conventional parameters of RV systolic function are in the normal range. Even though cardiac magnetic resonance-derived RV longitudinal strain showed excellent predictive value, echocardiography-derived RV strain remains the method of choice for evaluation of RV mechanics primarily due to high availability. Despite a constantly growing body of evidence that support RV longitudinal strain evaluation in the majority of CV patients, its assessment has not become the part of the routine echocardiographic examination in the majority of echocardiographic laboratories. The aim of this clinical review was to summarize the current data about the predictive value of RV longitudinal strain in patients with pulmonary hypertension, heart failure and valvular heart diseases.
(1) Background: Long COVID syndrome refers to long-term sequelae of the novel viral disease, which occur even in patients with initially mild disease courses. However, there is still little evidence of the actual organic consequences and their frequency, and there is no standardized workup to diagnose long COVID syndrome yet. In this study, we aim to determine the efficiency of a stepwise diagnostic approach for reconvalescent COVID-19 patients with cardiopulmonary symptoms. (2) Methods: The diagnostic workup for long COVID syndrome included three steps. In the first step, the focus was on broad applicability (e.g., blood tests and body plethysmography). In the second step, cardiopulmonary exercise testing (CPET) and cardiac MRI (CMR) were used. The third step was tailored to the individual needs of each patient. The observation period lasted from 22 February to 14 May 2021. (3) Results: We examined 231 patients in our long COVID unit (mean [SD] age, 47.8 [14.9], 132 [57.1%] women). Acute illness occurred a mean (SD) of 121 (77) days previously. Suspicious findings in the first visit were seen in 80 (34.6%) patients, prompting further diagnostics. Thirty-six patients were further examined with CPET and CMR. Of those, 16 (44.4%) had pathological findings. The rest had functional complaints without organ damage (“functional long COVID”). Cardiopulmonary sequelae were found in asymptomatic as well as severe courses of the initial COVID-19 disease. (4) Conclusions: A structured diagnostic pathway for the diagnosis of long COVID syndrome is practicable and rational in terms of resource allocation. With this approach, manifest organ damage can be accurately and comprehensively diagnosed and distinguished from functional complaints.
After acute infection with the SARS-CoV-2 virus, a considerable number of patients remains symptomatic with pathological changes in various organ systems. This study aimed to relate the physical and mental burden of symptoms of long COVID patients to the findings of a somatic evaluation. In patients with persistent long COVID symptoms three months after acute infection we assessed physical and mental health status using the SF-36 questionnaire. The cohort was dichotomised by the results (upper two quartiles vs. lower to quartiles) and compared with regard to transthoracic echocardiography, body plethysmography (including diffusion capacity), capillary blood gas analysis and 6-min walk test (6-MWT). From February 22 to September 13, 2021, 463 patients were prospectively examined, of which 367 completed the SF-36 questionnaire. A positive correlation between initial disease severity (need for hospitalization, intensive care medicine) and resulting symptom burden at follow-up could be demonstrated. Patients with impaired subjective physical and mental status were significantly more likely to be women. There was a significant correlation between symptom severity and reduced exercise tolerance in the 6-MWT (495.6 ± 83.7 m vs 549.7 ± 71.6 m, p < 0.001) and diffusion capacity for carbon monoxide (85.6 ± 14.3% of target vs 94.5 ± 14.4, p < 0.001). In long COVID patients, initial disease severity is correlated with symptom burden after at least 3 months of follow-up. Highly symptomatic long COVID patients show impaired diffusion capacity and 6-MWT despite average or mildly affected mechanical lung parameters. It must be further differentiated whether this corresponds to a transient functional impairment or whether it is a matter of defined organ damage.
BackgroundThe ongoing COVID-19 pandemic demands a series of measures and, above all, the vaccination of a substantial proportion of the population. Acute myocarditis is a rare complication of the widely used mRNA-based vaccines.Case PresentationWe present a case series of four patients (three men and one woman, 16 to 47 years old) with acute pericarditis/myocarditis 3 to 17 days after mRNA vaccination. They presented with chest pain, fever, and flu-like symptoms. Diagnosis was made based on the synopsis of clinical presentation, elevated levels of troponin T and NT-proBNP, impaired systolic function on echocardiography, and findings in non-invasive tissue characterization by cardiovascular magnetic resonance imaging. Two patients also underwent endomyocardial biopsies. As none of the patients showed signs of cardiogenic shock, they were discharged from ward care only a few days after their initial presentations.ConclusionsOur data are consistent with other case reports of myocarditis early after mRNA vaccination and demonstrate the need for multimodal diagnostics. In view of its rarity and mild course, the risk–benefit ratio of vaccination remains positive compared to potential SARS-CoV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.