Approximate matrix inversion based on Neumann series has seen a recent increased interest motivated by massive MIMO systems. There, the matrices are in many cases diagonally dominant, and, hence, a reasonable approximation can be obtained within a few iterations of a Neumann series. In this work, we clarify that the complexity of exact methods are about the same as when three terms are used for the Neumann series, so in this case, the complexity is not lower as often claimed. The second common argument for Neumann series approximation, higher parallelism, is indeed correct. However, in most current practical use cases, such a high degree of parallelism is not required to obtain a low latency realization. Hence, we conclude that a careful evaluation, based on accuracy and latency requirements must be performed and that exact matrix inversion is in fact viable in many more cases than the current literature claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.