Issue: The potential health risks on passengers and the environment related to electromagnetic fields caused by the operation of electrically driven high speed transportation systems has become a major issue. Especially the magnetic flux density or induction can generate physiological effects in body tissues. Aim: In this paper, we compare calculated and experimental values of electromagnetic fields in rail-wheel systems such as ICE with the Maglev-systems Transrapid and the JR Maglev-system, based on available data. Method: To estimate the impact on passengers, the field contributions generated by the power supply system as well as by the drive and suspension systems are taken into account. For the comparison, the peak values of the electromagnetic fields have been considered. Results: The results show, that there are no health risks from the electric fields. Regarding the magnetic induction, the calculated the peak values remain well below the limits given by national regulations. In the case of the Transrapid and the JR Maglev system, the measured peak values in the environment and inside the vehicle depend on the levitation and the guidance technology and the geometrical parameters. The JR Maglev system requires effective magnetic shielding measures which are connected with heavy materials. Since such materials may have a negative influence on the energy balance and the economics of operation, R&D efforts are focusing on the optimization of materials and the structure of shields. Conclusion: In high speed transportation systems there are no potential risks from electrical fields. Regarding magnetic fields, the induction generated by the power supply and the drive system remain well below the frequency dependent limits. The situation is different for magnetic levitation systems, depending on the suspension and guidance technology. Especially the JR Maglev requires effective shielding measures. The shielding materials may have a negative impact on the energy balance.
Background: The energy consumption of a high-speed system is an important part of its total operational costs. This paper compares the secondary energy demand of different wheel-rail systems, such as ICE, TGV and Shinkansen, and maglev systems, such as Transrapid and Chuo Shinkansen. In the past, energy values of systems with different conditions (train configuration, dimension, capacity, maximum speed) were frequently compared. The comparative values were often represented by the specific energy consumption based on passenger capacity and line-kilometer values. Aim: The goal is to find a way to compare the specific energy consumption of different high-speed systems without any distortion of results. Methods: A comparison of energy values based on normative usable areas inside the high-speed systems will be described and evaluated in this paper, transforming the results to a more distortion-free comparison of energy consumption of different systems. Results: The results show the energy consumption as an important characteristic parameter of high-speed transportation systems based on an objective comparison and give ranges of expected energy demand of different systems dependent on maximum speed level. Conclusion: Up to the design speed of wheel-rail systems there are slight advantages in terms of energy consumption for the Transrapid maglev. From the perspective of energy consumption under consideration to reduce travel time, high-speed maglev systems represent a promising option for new railway projects. However, a project-specific system decision must be based on a complete life-cycle cost analysis, including investment cost
The Chuo Shinkansen is a Japanese maglev line under construction between Tokyo and Osaka. On a central section of the line, construction has come to a standstill in 2020 for reasons of regional policy. This threatens the completion of the entire line. The article describes some of the interests triggering the underlying conflict. Some of the key points contained in the Japanese solution proposals are summarized. Overall, the opening of the high-speed maglev system is likely to be postponed by several years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.