Capacitor discharge welding (CDW) for projection welding provides very high current pulses in extremely short welding times. This requires a quick follow up behaviour of the electrodes during the softening of the projection. The possibilities of experimental process investigations are strongly limited because of the covered contact zone and short process times. The Finite Element Method (FEM) allows highly resoluted analyses in time and space and is therefore a suitable tool for process characterization and optimization. To utilize this mean of optimization, an indirect multiphysical numerical model has been developed in Ansys Mechanical APDL. This model couples the physical environments of thermal–electric with structural analysis. It can master the complexity of large deformations, short current rise times and high temperature gradients. A typical ring projection has been chosen as the joining task. The selected aluminium alloys are EN-AW-6082 (ring projection) and EN-AW-5083 (sheet metal). This paper presents the investigated material data, the model design and the methodology for an indirect coupling of the thermal–electric with the structural physic. The electrical contact resistance is adapted to the measured voltage in the experiment. The limits of the model in Ansys Mechanical APDL are due to large mesh deformation and decreasing element stiffness. Further modelling possibilities, which can handle the limits, are described.
Conventional resistance spot welds are not visible from the outside. Therefore, it is not straightforward to evaluate the joint quality non-destructively. The pulse-echo method of manual ultrasonic is widely used for non-destructive testing. Another option is the passive magnetic flux density testing, which is being developed at Technische Universität Dresden, Germany. The spot weld is magnetized in the normal direction and the residual magnetic flux density is measured on top of the surface of the joint. This method is suitable for spot welds on typical car body steels. Previous investigations show that the magnetic properties of the materials influence the test result. In order to develop this new non-destructive testing method further, it is necessary to know the magnetic properties of the different microstructure regions of a spot weld. This article focuses on methods to measure and evaluate the magnetic properties of these regions, especially of the base material and the weld. Different measuring methods and approaches are presented and compared with each other. Based on the results, recommendations for future measurements for magnetic characterizations are given.
Capacitor discharge welding is an efficient, cost-effective and stable process. It is mostly used for projection welding. Real-time monitoring is desired to ensure quality. Until this point, measured process quantities were evaluated through expert systems. This method is strongly restricted to specific welding tasks and needs deep understanding of the process. Another possibility is quality prediction based on process data with machine learning. This requires classified welding experiments to achieve a high prediction probability. In industrial manufacturing, it is rarely possible to generate big sets classified data. Therefore, semi-supervised learning is investigated to enable model development on small data sets. Supervised learning models on large amounts of data are used as a comparison to the semi-supervised models. A total of 389 classified weld tests were performed. With semi-supervised learning methods, the amount of training data necessary was reduced to 31 classified data sets.
The amount of aluminium sheets in future body-in-white concepts is still on the rise. There is a need for optimizing the joining techniques, caused by the different characteristics compared to the established steel components. Especially the electrode life for resistance spot welding as a reliable and established process needs to be improved. One reason for the short electrode life when welding aluminium is the insulating effect of the aluminium oxide layer. One possibility to reduce the electrode wear is the mechanical destruction of the oxide layer before the welding. This paper describes the influence of a translational and rotational electrode movement on the electrode wear. The oxide layer destruction is detected by resistance measurement. It could be shown that the destruction of the oxide layer already occurs at low movements. However, a homogeneous, large-area destruction is necessary for a wear reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.