Background The carboxylate platform is a promising technology for substituting petrochemicals in the provision of specific platform chemicals and liquid fuels. It includes the chain elongation process that exploits reverse β–oxidation to elongate short-chain fatty acids and forms the more valuable medium-chain variants. The pH value influences this process through multiple mechanisms and is central to effective product formation. Its influence on the microbiome dynamics was investigated during anaerobic fermentation of maize silage by combining flow cytometric short interval monitoring, cell sorting and 16S rRNA gene amplicon sequencing. Results Caproate and caprylate titres of up to 6.12 g L −1 and 1.83 g L −1 , respectively, were achieved in a continuous stirred-tank reactor operated for 241 days. Caproate production was optimal at pH 5.5 and connected to lactate-based chain elongation, while caprylate production was optimal at pH 6.25 and linked to ethanol utilisation. Flow cytometry recorded 31 sub-communities with cell abundances varying over 89 time points. It revealed a highly dynamic community, whereas the sequencing analysis displayed a mostly unchanged core community. Eight key sub-communities were linked to caproate or caprylate production (r S > | ± 0.7|). Amongst other insights, sorting and subsequently sequencing these sub-communities revealed the central role of Bifidobacterium and Olsenella , two genera of lactic acid bacteria that drove chain elongation by providing additional lactate, serving as electron donor. Conclusions High-titre medium-chain fatty acid production in a well-established reactor design is possible using complex substrate without the addition of external electron donors. This will greatly ease scaling and profitable implementation of the process. The pH value influenced the substrate utilisation and product spectrum by shaping the microbial community. Flow cytometric single cell analysis enabled fast, short interval analysis of this community and was coupled with 16S rRNA gene amplicon sequencing to reveal the major role of lactate-producing bacteria. Electronic supplementary material The online version of this article (10.1186/s12934-019-1143-8) contains supplementary material, which is available to authorized users.
BackgroundThe widely established production of CH4 from renewable biomass in industrial scale anaerobic reactors may play a major role in the future energy supply. It relies on methanogenic archaea as key organisms which represent the bottleneck in the process. The quantitative analysis of these organisms can help to maximize process performance, uncover disturbances before failure, and may ultimately lead to community-based process control schemes. Existing qPCR and fluorescence microscopy-based methods are very attractive but can be cost-intensive and laborious.ResultsIn this study we present an autofluorescence-based, flow cytometric method for the fast low-cost quantification of methanogenic archaea in complex microbial communities and crude substrates. The method was applied to a methanogenic enrichment culture (MEC) and digester samples (DS). The methanogenic archaea were quantified using the distinct fluorescence of their cofactor F420 in a range from 3.7 × 108 (± 3.3 × 106) cells mL−1 and 1.8 x 109 (± 1.1 × 108) cells mL−1. We evaluated different fixation methods and tested the sample stability. Stable abundance and fluorescence intensity were recorded up to 26 days during aerobic storage in PBS at 6 °C. The discrimination of the whole microbial community from the ubiquitous particle noise was facilitated by SYBR Green I staining and enabled calculation of relative abundances of methanogenic archaea of up to 9.64 ± 0.23% in the MEC and up to 4.43 ± 0.74% in the DS. The metaprofiling of the mcrA gene reinforced the results.ConclusionsThe presented method allows for fast and reliable quantification of methanogenic archaea in microbial communities under authentic digester conditions and can thus be useful for process monitoring and control in biogas digesters.Electronic supplementary materialThe online version of this article (10.1186/s12934-017-0793-7) contains supplementary material, which is available to authorized users.
Phenotypic heterogeneity within microbial populations arises even when the cells are exposed to putatively constant and homogeneous conditions. The outcome of this phenomenon can affect the whole function of the population, resulting in, for example, new "adapted" metabolic strategies and impacting its fitness at given environmental conditions. Accounting for phenotypic heterogeneity becomes thus necessary, due to its relevance in medical and applied microbiology as well as in environmental processes. Still, a comprehensive evaluation of this phenomenon requires a common and unique method of quantitation, which allows for the comparison between different studies carried out with different approaches. Consequently, in this study, two widely applicable indices for quantitation of heterogeneity were developed. The heterogeneity coefficient (HC) is valid when the population follows unimodal activity, while the differentiation tendency index (DTI) accounts for heterogeneity implying outbreak of subpopulations and multimodal activity. We demonstrated the applicability of HC and DTI for heterogeneity quantitation on stable isotope probing with nanoscale secondary ion mass spectrometry (SIP-nanoSIMS), flow cytometry, and optical microscopy datasets. The HC was found to provide a more accurate and precise measure of heterogeneity, being at the same time consistent with the coefficient of variation (CV) applied so far. The DTI is able to describe the differentiation in single-cell activity within monoclonal populations resolving subpopulations with low cell abundance, individual cells with similar phenotypic features (e.g., isotopic content close to natural abundance, as detected with nanoSIMS). The developed quantitation approach allows for a better understanding on the impact and the implications of phenotypic heterogeneity in environmental, medical and applied microbiology, microbial ecology, cell biology, and biotechnology.
The investigation of pure cultures and monitoring of microbial community dynamics is vital to understand and control natural ecosystems and technical applications driven by microorganisms. Next generation sequencing methods are widely utilized to resolve microbiomes, but they are generally resource and time intensive and deliver mostly qualitative information. Flow cytometric microbiome analysis does not suffer from those disadvantages and can provide relative subcommunity abundances and absolute cell numbers at-line. Although it does not deliver direct phylogenetic information, it can enhance the analysis depth and resolution of sequencing approaches. In sharp contrast to medical applications in both research and routine settings, flow cytometry is still not widely used for microbiome analysis. Missing information on sample preparation and data analysis pipelines may create an entry barrier for the researchers facing microbiome analysis challenges that would often be textbook flow cytometry applications. Here, we present three comprehensive workflows for pure cultures, complex communities in clear medium and complex communities in challenging matrices, respectively. We describe individual sampling and fixation procedures and optimized staining protocols for the respective sample sets. We elaborate the cytometric analysis with a complex research centered and an application focused bench top device, describe the cell sorting procedure and suggest data analysis packages. We furthermore propose important experimental controls and apply the presented workflows to the respective sample sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.