Unlike other members of the TNF superfamily, the TNF-related apoptosis-inducing ligand (TRAIL, also known as Apo2L) possesses the unique capacity to induce apoptosis selectively in cancer cells in vitro and in vivo. This exciting discovery provided the basis for the development of TRAIL-receptor agonists (TRAs), which have demonstrated robust anticancer activity in a number of preclinical studies. Subsequently initiated clinical trials testing TRAs demonstrated, on the one hand, broad tolerability but revealed, on the other, that therapeutic benefit was rather limited. Several factors that are likely to account for TRAs' sobering clinical performance have since been identified. First, because of initial concerns over potential hepatotoxicity, TRAs with relatively weak agonistic activity were selected to enter clinical trials. Second, although TRAIL can induce apoptosis in several cancer cell lines, it has now emerged that many others, and importantly, most primary cancer cells are resistant to TRAIL monotherapy. Third, so far patients enrolled in TRA-employing clinical trials were not selected for likelihood of benefitting from a TRA-comprising therapy on the basis of a valid(ated) biomarker. This review summarizes and discusses the results achieved so far in TRA-employing clinical trials in the light of these three shortcomings. By integrating recent insight on apoptotic and non-apoptotic TRAIL signaling in cancer cells, we propose approaches to introduce novel, revised TRAIL-based therapeutic concepts into the cancer clinic. These include (i) the use of recently developed highly active TRAs, (ii) the addition of efficient, but cancer-cell-selective TRAIL-sensitizing agents to overcome TRAIL resistance and (iii) employing proteomic profiling to uncover resistance mechanisms. We envisage that this shall enable the design of effective TRA-comprising therapeutic concepts for individual cancer patients in the future.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4 and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists.
Many cancers harbor oncogenic mutations of KRAS. Effectors mediating cancer progression, invasion, and metastasis in KRAS-mutated cancers are only incompletely understood. Here we identify cancer cell-expressed murine TRAIL-R, whose main function ascribed so far has been the induction of apoptosis as a crucial mediator of KRAS-driven cancer progression, invasion, and metastasis and in vivo Rac-1 activation. Cancer cell-restricted genetic ablation of murine TRAIL-R in autochthonous KRAS-driven models of non-small-cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) reduces tumor growth, blunts metastasis, and prolongs survival by inhibiting cancer cell-autonomous migration, proliferation, and invasion. Consistent with this, high TRAIL-R2 expression correlates with invasion of human PDAC into lymph vessels and with shortened metastasis-free survival of KRAS-mutated colorectal cancer patients.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many cancer cells without causing toxicity in vivo. However, to date, TRAIL-receptor agonists have only shown limited therapeutic benefit in clinical trials. This can, most likely, be attributed to the fact that 50% of all cancer cell lines and most primary human cancers are TRAIL resistant. Consequently, future TRAIL-based therapies will require the addition of sensitizing agents that remove crucial blocks in the TRAIL apoptosis pathway. Here, we identify PIK-75, a small molecule inhibitor of the p110α isoform of phosphoinositide-3 kinase (PI3K), as an exceptionally potent TRAIL apoptosis sensitizer. Surprisingly, PI3K inhibition was not responsible for this activity. A kinome-wide in vitro screen revealed that PIK-75 strongly inhibits a panel of 27 kinases in addition to p110α. Within this panel, we identified cyclin-dependent kinase 9 (CDK9) as responsible for TRAIL resistance of cancer cells. Combination of CDK9 inhibition with TRAIL effectively induced apoptosis even in highly TRAIL-resistant cancer cells. Mechanistically, CDK9 inhibition resulted in downregulation of cellular FLICE-like inhibitory protein (cFlip) and Mcl-1 at both the mRNA and protein levels. Concomitant cFlip and Mcl-1 downregulation was required and sufficient for TRAIL sensitization by CDK9 inhibition. When evaluating cancer selectivity of TRAIL combined with SNS-032, the most selective and clinically used inhibitor of CDK9, we found that a panel of mostly TRAIL-resistant non-small cell lung cancer cell lines was readily killed, even at low concentrations of TRAIL. Primary human hepatocytes did not succumb to the same treatment regime, defining a therapeutic window. Importantly, TRAIL in combination with SNS-032 eradicated established, orthotopic lung cancer xenografts in vivo. Based on the high potency of CDK9 inhibition as a cancer cell-selective TRAIL-sensitizing strategy, we envisage the development of new, highly effective cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.