This paper presents the results of the WMT14 shared tasks, which included a standard news translation task, a separate medical translation task, a task for run-time estimation of machine translation quality, and a metrics task. This year, 143 machine translation systems from 23 institutions were submitted to the ten translation directions in the standard translation task. An additional 6 anonymized systems were included, and were then evaluated both automatically and manually. The quality estimation task had four subtasks, with a total of 10 teams, submitting 57 entries.
Abstract. Discharge summaries and other free-text reports in healthcare transfer information between working shifts and geographic locations. Patients are likely to have difficulties in understanding their content, because of their medical jargon, non-standard abbreviations, and ward-specific idioms. This paper reports on an evaluation lab with an aim to support the continuum of care by developing methods and resources that make clinical reports in English easier to understand for patients, and which helps them in finding information related to their condition. This ShARe/CLEFeHealth2013 lab offered student mentoring and shared tasks: identification and normalisation of disorders (1a and 1b) and normalisation of abbreviations and acronyms (2) Overview of the ShARe/CLEF eHealth Evaluation Lab 2013 213 reports with respect to terminology standards in healthcare as well as information retrieval (3) to address questions patients may have when reading clinical reports. The focus on patients' information needs as opposed to the specialised information needs of physicians and other healthcare workers was the main feature of the lab distinguishing it from previous shared tasks. De-identified clinical reports for the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Task 3 were from the Internet and originated from the Khresmoi project. Task 1 annotations originated from the ShARe annotations. For Tasks 2 and 3, new annotations, queries, and relevance assessments were created. 64, 56, and 55 people registered their interest in Tasks 1, 2, and 3, respectively. 34 unique teams (3 members per team on average) participated with 22, 17, 5, and 9 teams in Tasks 1a, 1b, 2 and 3, respectively. The teams were from Australia, China, France, India, Ireland, Republic of Korea, Spain, UK, and USA. Some teams developed and used additional annotations, but this strategy contributed to the system performance only in Task 2. The best systems had the F1 score of 0.75 in Task 1a; Accuracies of 0.59 and 0.72 in Tasks 1b and 2; and Precision at 10 of 0.52 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical reports easier to understand for patients. The organisers have made data and tools available for future research and development.
Objective. We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve effectiveness of cross-lingual IR.Methods and Data. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech-English, German-English, and French-English. MT quality is evaluated on data sets created within the Khresmoi project and IR effectiveness is tested on the CLEF eHealth 2013 data sets.Results. The search query translation results achieved in our experiments are outstanding -our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech-English, from 23.03 to 40.82 for German-English, and from 32.67 to 40.82 for French-English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French-English. For Czech-English and German-English, the increased MT quality does not lead to better IR results.Conclusions. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the IR performance -better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual techniques and state-of-the-art features and provide future research directions.
Queries in patent prior art search, being full patent applications, are very much longer than standard ad hoc search and web search topics. Standard information retrieval (IR) techniques are not entirely effective for patent prior art search because of the presence of ambiguous terms in these massive queries. Reducing patent queries by extracting small numbers of key terms has been shown to be ineffective mainly because it is not clear what the focus of the query is. An optimal query reduction algorithm must thus seek to retain the useful terms for retrieval favouring recall of relevant patents, but remove terms which impair retrieval effectiveness. We propose a new query reduction technique decomposing a patent application into constituent text segments and computing the Language Modeling (LM) similarities by calculating the probability of generating each segment from the top ranked documents. We reduce a patent query by removing the least similar segments from the query, hypothesizing that removal of segments most dissimilar to the pseudo-relevant documents can increase the precision of retrieval by removing nonuseful context, while still retaining the useful context to achieve high recall as well. Experiments on the patent prior art search collection CLEF-IP 2010, show that the proposed method outperforms standard pseudo relevance feedback (PRF) and a naive method of query reduction based on removal of unit frequency terms (UFTs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.