In mammalian cells, signal peptide‐dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic protein‐conducting channel, the Sec61 complex. Previous work has characterized the Sec61 channel as a potential ER Ca2+ leak channel and identified calmodulin as limiting Ca2+ leakage in a Ca2+‐dependent manner by binding to an IQ motif in the cytosolic aminoterminus of Sec61α. Here, we manipulated the concentration of the ER lumenal chaperone BiP in cells in different ways and used live cell Ca2+ imaging to monitor the effects of reduced levels of BiP on ER Ca2+ leakage. Regardless of how the BiP concentration was lowered, the absence of available BiP led to increased Ca2+ leakage via the Sec61 complex. When we replaced wild‐type Sec61α with mutant Sec61αY344H in the same model cell, however, Ca2+ leakage from the ER increased and was no longer affected by manipulation of the BiP concentration. Thus, BiP limits ER Ca2+ leakage through the Sec61 complex by binding to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344.
In mammalian cells, proteins are typically translocated across the endoplasmic reticulum (ER) membrane in a co-translational mode by the ER protein translocon, comprising the proteinconducting channel Sec61 and additional complexes involved in nascent chain processing and translocation. As an integral component of the translocon, the oligosaccharyl-transferase complex (OST) catalyses co-translational N-glycosylation, one of the most common protein modifications in eukaryotic cells. Here we use cryoelectron tomography, cryoelectron microscopy single-particle analysis and small interfering RNA-mediated gene silencing to determine the overall structure, oligomeric state and position of OST in the native ER protein translocon of mammalian cells in unprecedented detail. The observed positioning of OST in close proximity to Sec61 provides a basis for understanding how protein translocation into the ER and glycosylation of nascent proteins are structurally coupled. The overall spatial organization of the native translocon, as determined here, serves as a reliable framework for further hypothesis-driven studies.
BackgroundTumor cells benefit from their ability to avoid apoptosis and invade other tissues. The endoplasmic reticulum (ER) membrane protein Sec62 is a key player in these processes. Sec62 is essential for cell migration and protects tumor cells against thapsigargin-induced ER stress, which are both linked to cytosolic Ca2+. SEC62 silencing leads to elevated cytosolic Ca2+ and increased ER Ca2+ leakage after thapsigargin treatment. Sec62 protein levels are significantly increased in different tumors, including prostate, lung and thyroid cancer.MethodsIn lung cancer, the influence of Sec62 protein levels on patient survival was analyzed using the Kaplan-Meier method and log-rank test. To elucidate the underlying pathophysiological functions of Sec62, Ca2+ imaging techniques, real-time cell analysis and cell migration assays were performed. The effects of treatment with the calmodulin antagonists, trifluoperazine (TFP) and ophiobolin A, on cellular Ca2+ homeostasis, cell growth and cell migration were compared with the effects of siRNA-mediated Sec62 depletion or the expression of a mutated SEC62 variant in vitro. Using Biacore analysis we examined the Ca2+-sensitive interaction of Sec62 with the Sec61 complex.ResultsSec62 overproduction significantly correlated with reduced patient survival. Therefore, Sec62 is not only a predictive marker for this type of tumor, but also an interesting therapeutic target. The present study suggests a regulatory function for Sec62 in the major Ca2+ leakage channel in the ER, Sec61, by a direct and Ca2+-sensitive interaction. A Ca2+-binding motif in Sec62 is essential for its molecular function. Treatment of cells with calmodulin antagonists mimicked Sec62 depletion by inhibiting cell migration and rendering the cells sensitive to thapsigargin treatment.ConclusionsTargeting tumors that overproduce Sec62 with calmodulin antagonists in combination with targeted thapsigargin analogues may offer novel personalized therapeutic options.
The molecular carcinogenesis of lung cancer has yet to be clearly elucidated. We investigated the possible oncogenic function of SEC62 in lung cancer, which was predicted based on our previous findings that lung and thyroid cancer tissue samples exhibited increased Sec62 protein levels. The SEC62 gene locus is at 3q26.2, and 3q amplification is reportedly the most common genomic alteration in non-small cell lung cancer. We analyzed SEC62 mRNA and protein levels in tissue samples from lung cancer patients by real-time quantitative PCR, Western blot, and IHC and found significantly increased SEC62 mRNA and protein levels in tumors compared with tumor-free tissue samples from the same patients. Correlation analyses revealed significantly higher Sec62 levels in tumors with lymph node metastases compared with nonmetastatic tumors, as well as in poorly compared with moderately differentiated tumors. On the basis of these promising results, we examined the role of Sec62 in cancer cell biology in vitro. Cell migration assays with lung and thyroid cancer cells showed distinct stimulation of migration in SEC62-overexpressing cells and inhibition of migration in Sec62-depleted cells. Moreover, we found that SEC62 silencing sensitized the cells to thapsigargin-induced endoplasmic reticulum stress. Thus, our results indicate that SEC62 represents a potential candidate oncogene in the amplified 3q region in cases of non-small cell lung cancer and harbors various functions in cancer cell biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.