We obtained two most parsimonious cladograms using a data set of 100 characters derived from morphology, anatomy, embryology, chemistry, and karyology, combined with three nucleotide sequence data sets (the chloroplast genes atpB, ndhF, and rbcL) in a phylogenetic analysis of all 12 currently recognized families in the angiosperm order Asterales, represented by 40 genera. Most clades were supported by a jackknife value of at least 50% and a Bremer support of 5 or more. Rousseaceae sensu lato (including Carpodetaceae), together with Pentaphragmataceae and Campanulaceae s.l., is the sister group to the rest of the Asterales. A sister group relationship between Donatia and Stylidiaceae is well supported both morphologically and by molecular data, and we suggest that Donatia should again be treated as a subfamily in Stylidiaceae. The sister group relationship between Calyceraceae and Asteraceae is well supported.
The phylogeny of Nereidiformia is assessed in a parsimony analysis of combined morphological and DNA data, with special focus on previously questioned relationships between Chrysopetalidae and Hesionidae, between Pilargidae and Hesionidae, and the affinities of Hesionides and Microphthalmus. A 660 bp segment of the mtDNA cytochrome c oxidase subunit I gene was sequenced for two chrysopetalids, one nereidid, one pilargid, one pisionid, two hesionids, plus the two questionable hesionids Hesionides arenaria and Microphthalmus sp. Phylogenetic resolution was poor for the cytochrome c oxidase subunit I gene data alone, but the combined analysis yielded partially robust topologies, suggesting that nereids are the sister group to chrysopetalids, and that pilargids, Hesionides and Microphthalmus do not belong within the hesionids
Speleothems are secondary mineral deposits normally formed by water supersaturated with calcium carbonate percolating into underground caves, and are often associated with low-nutrient and mostly non-phototrophic conditions. Tjuv-Ante’s cave is a shallow-depth cave formed by the action of waves, with granite and dolerite as major components, and opal-A and calcite as part of the speleothems, making it a rare kind of cave. We generated two DNA shotgun sequencing metagenomic datasets from the interior of a speleothem from Tjuv-Ante’s cave representing areas of old and relatively recent speleothem formation. We used these datasets to perform i) an evaluation of the use of these speleothems as past biodiversity archives, ii) functional and taxonomic profiling of the speleothem’s different formation periods, and iii) taxonomic comparison of the metagenomic results to previous microscopic analyses from a nearby speleothem of the same cave. Our analyses confirm the abundance of Actinobacteria and fungi as previously reported by microscopic analyses on this cave, however we also discovered a larger biodiversity. Interestingly, we identified photosynthetic genes, as well as genes related to iron and sulphur metabolism, suggesting the presence of chemoautotrophs. Furthermore, we identified taxa and functions related to biomineralization. However, we could not confidently establish the use of this type of speleothems as biological paleoarchives due to the potential leaching from the outside of the cave and the DNA damage that we propose has been caused by the fungal chemical etching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.