1Both authors contributed equally.Abbreviations used: DAPI, 4¢,6-diamidino-2¢-phenylindole; SC, spinal cord; SNS, sympathetic nervous system; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; VZ, ventricular zone. AbstractDevelopment of the mouse CNS was reported to be normal in the absence of either Sox4 or its close relative Sox11 despite strong and widespread expression of both transcription factors. In this study, we show that combined absence of both Sox proteins in the mouse leads to severe hypoplasia of the developing spinal cord. Proliferation of neuroepithelial precursor cells in the ventricular zone was unaffected. These cells also acquired their correct positional identity. Both glial and neuronal progenitors were generated and neurons appeared in a similar spatiotemporal pattern as in the wild-type. Rates of cell death were however dramatically increased throughout embryogenesis in the double deficient spinal cord arguing that Sox4 and Sox11 are jointly and redundantly required for cell survival. The absence of pronounced proliferation, patterning, specification, and maturation defects furthermore indicates that the decreased cell survival is not a secondary effect of one of these events. We therefore conclude that the two Sox proteins directly function as pro-survival factors during spinal cord development in neural cell types.
The high-mobility-group domain containing SoxC transcription factors Sox4 and Sox11 are expressed and required in the vertebrate central nervous system in neuronal precursors and neuroblasts. To identify genes that are widely regulated by SoxC proteins during vertebrate neurogenesis we generated expression profiles from developing mouse brain and chicken neural tube with reduced SoxC expression and found the transcription factor prospero homeobox protein 1 (Prox1) strongly down-regulated under both conditions. This led us to hypothesize that Prox1 expression depends on SoxC proteins in the developing central nervous system of mouse and chicken. By combining luciferase reporter assays and over-expression in the chicken neural tube with in vivo and in vitro binding studies, we identify the Prox1 gene promoter and two upstream enhancers at -44 kb and -40 kb relative to the transcription start as regulatory regions that are bound and activated by SoxC proteins. This argues that Prox1 is a direct target gene of SoxC proteins during neurogenesis. Electroporations in the chicken neural tube furthermore show that Prox1 activates a subset of SoxC target genes, whereas it has no effects on others. We propose that the transcriptional control of Prox1 by SoxC proteins may ensure coupling of two types of transcription factors that are both required during early neurogenesis, but have at least in part distinct functions. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.