One obstacle that so far prevents the introduction of machine learning models primarily in critical areas is the lack of explainability. In this work, a practicable approach of gaining explainability of deep artificial neural networks (NN) using an interpretable surrogate model based on decision trees is presented. Simply fitting a decision tree to a trained NN usually leads to unsatisfactory results in terms of accuracy and fidelity. Using L1-orthogonal regularization during training, however, preserves the accuracy of the NN, while it can be closely approximated by small decision trees. Tests with different data sets confirm that L1-orthogonal regularization yields models of lower complexity and at the same time higher fidelity compared to other regularizers.
Machine learning (ML) models based on a large data set of in-cylinder flow fields of an IC engine obtained by high-speed particle image velocimetry allow the identification of relevant flow structures underlying cycle-to-cycle variations of engine performance. To this end, deep feature learning is employed to train ML models that predict cycles of high and low in-cylinder maximum pressure. Deep convolutional autoencoders are self-supervised-trained to encode flow field features in low dimensional latent space. Without the limitations ascribable to manual feature engineering, ML models based on these learned features are able to classify high energy cycles already from the flow field during late intake and the compression stroke as early as 290 crank angle degrees before top dead center ([Formula: see text]) with a mean accuracy above chance level. The prediction accuracy from [Formula: see text] to [Formula: see text] is comparable to baseline ML approaches utilizing an extensive set of engineered features. Relevant flow structures in the compression stroke are revealed by feature analysis of ML models and are interpreted using conditional averaged flow quantities. This analysis unveils the importance of the horizontal velocity component of in-cylinder flows in predicting engine performance. Combining deep learning and conventional flow analysis techniques promises to be a powerful tool for ultimately revealing high-level flow features relevant to the prediction of cycle-to-cycle variations and further engine optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.