For evaluating climate change impacts on biodiversity, extensive experiments are urgently needed to complement popular non-mechanistic models which map future ecosystem properties onto their current climatic niche. Here, we experimentally test the main prediction of these models by means of a novel multi-site approach. We implement rainfall manipulations—irrigation and drought—to dryland plant communities situated along a steep climatic gradient in a global biodiversity hotspot containing many wild progenitors of crops. Despite the large extent of our study, spanning nine plant generations and many species, very few differences between treatments were observed in the vegetation response variables: biomass, species composition, species richness and density. The lack of a clear drought effect challenges studies classifying dryland ecosystems as most vulnerable to global change. We attribute this resistance to the tremendous temporal and spatial heterogeneity under which the plants have evolved, concluding that this should be accounted for when predicting future biodiversity change.
Summary 1.A positive relationship between seed size and subsequent offspring survival is a key assumption in ecological theory concerning life-history strategies. Yet, this relationship is uncertain in respect to lifetime survival because sound evidence only exists for early seedling stages. Furthermore, the effect of environmental variation in space and time, and of contrasting plant functional groups, on this relationship has been scarcely examined. 2. Here, we investigated survival and between-year variation therein. We tested for both whether their relationship to seed size (i) is maintained up until reproduction, (ii) changes along environmental gradients and (iii) differs between functional groups (grasses, legumes, forbs). 3. Survival was monitored from established seedlings to reproductive plants in 49 annual species under natural conditions during 7 years in three sites along a steep rainfall gradient. We then related average survival per species and between-year variation in survival to seed size, site along the gradient and functional group. 4. Larger seed size was associated with higher survival and lower between-year variation. Across the rainfall gradient, we detected no difference in the seed size-survival relationships; however, variation between years was lowest in the most mesic site where no relationship for between-year variation with seed size was observed. Legumes showed lower survival and higher between-year variation than grasses. 5. Our findings indicate that larger seed size provides survival advantages beyond seedling establishment up until reproduction among annual species. Larger seed size also provides a bet-hedging strategy in temporally unpredictable environments. Increased abiotic favourability along environmental gradients may have little effect on survival rates but reduces survival variation between years and thus reduces the bet-hedging benefit of larger seed size. We suggest that the contrasting response of legumes and grasses may partly result from their disparity in seed dormancy. 6. Synthesis. Current plant life-history theory can be refined by accounting for both benefits of larger seed size, higher survival rates and bet-hedging. Studies along environmental gradients are needed to generalize findings across ecosystems and to predict patterns of plant traits and plant performance under changing environmental conditions.
Summary Plant–plant interactions may critically modify the impact of climate change on plant communities. However, the magnitude and even direction of potential future interactions remains highly debated, especially for water‐limited ecosystems. Predictions range from increasing facilitation to increasing competition with future aridification. The different methodologies used for assessing plant–plant interactions under changing environmental conditions may affect the outcome but they are not equally represented in the literature. Mechanistic experimental manipulations are rare compared with correlative approaches that infer future patterns from current observations along spatial climatic gradients. Here, we utilize a unique climatic gradient in combination with a large‐scale, long‐term experiment to test whether predictions about plant–plant interactions yield similar results when using experimental manipulations, spatial gradients or temporal variation. We assessed shrub–annual interactions in three different sites along a natural rainfall gradient (spatial) during 9 years of varying rainfall (temporal) and 8 years of dry and wet manipulations of ambient rainfall (experimental) that closely mimicked regional climate scenarios. The results were fundamentally different among all three approaches. Experimental water manipulations hardly altered shrub effects on annual plant communities for the assessed fitness parameters biomass and survival. Along the spatial gradient, shrub effects shifted from clearly negative to mildly facilitative towards drier sites, whereas temporal variation showed the opposite trend: more negative shrub effects in drier years. Based on our experimental approach, we conclude that shrub–annual interaction will remain similar under climate change. In contrast, the commonly applied space‐for‐time approach based on spatial gradients would have suggested increasing facilitative effects with climate change. We discuss potential mechanisms governing the differences among the three approaches. Our study highlights the critical importance of long‐term experimental manipulations for evaluating climate change impacts. Correlative approaches, for example along spatial or temporal gradients, may be misleading and overestimate the response of plant–plant interactions to climate change.
Bet-hedging via between-year seed dormancy is a costly strategy for plants in unpredictable environments. Theoretically, fitness costs can be reduced through a parental environmental effect when the environment is partly predictable. We tested whether populations from environments that differ in predictability diverged in parental effects on seed dormancy. Common garden-produced seeds of the two annual plant species Biscutella didyma and Bromus fasciculatus collected along an aridity gradient were grown under 12 irrigation treatments. Offspring germination was evaluated and related to environmental correlations between generations and their fitness consequences at the four study sites. One species exhibited strong seed dormancy that increased with unpredictability in seasonal precipitation. The parental effect on seed dormancy also increased proportionally with the environmental correlation between precipitation in the parental season and seedling density in the following season; this correlation increased from mesic to arid environments. Because fitness was negatively related to density, this parental effect may be adaptive. However, the lack of dormancy in the second species indicates that bet-hedging is not the only strategy for annual plants in arid environments. Our results provide the first evidence for clinal variation in the relative strength of parental effects along environmental gradients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.