A second generation motorized nanocar was designed, synthesized, and imaged. To verify structural integrity, NMR-based COSY, NOESY, DEPT, HSQC, and HMBC experiments were conducted on the intermediate motor. All signals in (1)H NMR were unambiguously assigned, and the results were consistent with the helical structure of the motor. The nanocar was deposited on a Cu(111) surface, and single intact molecules were imaged by scanning tunneling microscopy (STM) at 5.7 K, thereby paving the way for future single-molecule studies of this motorized nanocar atop planar substrates.
Currently established and projected regulatory frameworks require the classification of materials (whether nano or non-nano) as specified by respective definitions, most of which are based on the size of the constituent particles. This brings up the question if currently available techniques for particle size determination are capable of reliably classifying materials that potentially fall under these definitions. In this study, a wide variety of characterisation techniques, including counting, fractionating, and spectroscopic techniques, has been applied to the same set of materials under harmonised conditions. The selected materials comprised well-defined quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. As a result, each technique could be evaluated with respect to the determination of the number-weighted median size. Recommendations on the most appropriate and efficient use of techniques for different types of material are given.Graphical AbstractElectronic supplementary materialThe online version of this article (doi:10.1007/s11051-016-3461-7) contains supplementary material, which is available to authorized users.
The adsorption of porphyrin derivatives on a Au(111) surface was studied by scanning tunneling microscopy and spectroscopy at low temperatures in combination with density functional theory calculations. Different molecular appearances were found and could be assigned to the presence of single gold adatoms bonded by a coordination bond underneath the molecular monolayer, causing a characteristic change of the electronic structure of the molecules. Moreover, this interpretation could be confirmed by manipulation experiments of individual molecules on and off a single gold atom. This study provides a detailed understanding of the role of metal adatoms in surface-molecule bonding and anchoring and of the appearance of single molecules, and it should prove relevant for the imaging of related molecule-metal systems.
Molecular switches are of fundamental importance in nature, and light is an important stimulus to selectively drive the switching process. However, the local dynamics of a conformational change in these molecules remain far from being completely understood at the single-molecule level. Here, we report the direct observation of photoinduced tautomerization in single porphycene molecules on a Cu(111) surface by using a combination of low-temperature scanning tunneling microscopy and laser excitation in the near-infrared to ultraviolet regime. It is found that the thermodynamically stable trans configuration of porphycene can be converted to the metastable cis configuration in a unidirectional fashion by photoirradiation. The wavelength dependence of the tautomerization cross section exhibits a steep increase around 2 eV and demonstrates that excitation of the Cu d-band electrons and the resulting hot carriers play a dominant role in the photochemical process. Additionally, a pronounced isotope effect in the cross section (∼100) is observed when the transferred hydrogen atoms are substituted with deuterium, indicating a significant contribution of zero-point energy in the reaction. Combined with the study of inelastic tunneling electron-induced tautomerization with the STM, we propose that tautomerization occurs via excitation of molecular vibrations after photoexcitation. Interestingly, the observed cross section of ∼10(-19) cm(2) in the visible-ultraviolet region is much higher than that of previously studied molecular switches on a metal surface, for example, azobenzene derivatives (10(-23)-10(-22) cm(2)). Furthermore, we examined a local environmental impact on the photoinduced tautomerization by varying molecular density on the surface and find substantial changes in the cross section and quenching of the process due to the intermolecular interaction at high density.
Molecules that undergo reversible isomerization between trans and cis states, typically upon illumination with light at appropriate wavelengths, represent an important class of molecular switches. In this combined scanning tunneling microscopy (STM) and high-resolution electron energy loss spectroscopy (HREELS) study, we report on self-assembled arrays of imine derivatives on a Au(111) surface. Most of the molecules are found in the trans state after deposition at room temperature, but many of them change their conformation upon heating, which we assign to switching to the cis state. As for many molecular switches, the trans isomer is the energetically more stable compound in solution, resulting in thermal cis to trans relaxation upon sufficient heating. On the surface, however, the number of cis isomers increases with temperature, pointing toward an "inverted" thermal isomerization behavior. The reason for this surface-mediated effect could be a stronger coupling, as compared to the trans state, of the central imine part of the molecule to the gold surface, which is sterically only possible in the cis state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.