Abstract:When the first free-floating carsharing operators launched their business, they did not know if it would be profitable. They often started in highly populated cities without performing extensive target group analysis, and were less concerned about fleet management. Usually, there are two main datasets that can be used to find areas that would have a high demand for free-floating carsharing: booking data, for measuring the actual demand; and land use and census data for describing the activities performed in different areas in a city. In this paper, we aim to use this information to help predict the demand of free-floating carsharing systems. We use booking data provided by DriveNow for Berlin in 2014 and contextual information about the type of activity each neighborhood has. Using Berlin as a case study, we apply a negative binomial statistical model to explain the number of bookings. From the results, we conclude that free-floating carsharing is predominantly successful in areas with more affluent citizens who are open to trying new and sustainable technologies. Other important determinants that result in a high number of carsharing bookings are the area's centrality and parking lot availability. The statistical model for Berlin was then transferred to Munich and Cologne, two other cities in Germany with similar population sizes. A comparison between the estimated demand categories and actual bookings shows satisfying results, but also non-negligible local conditions influencing the spatial demand for bookings.
The equivalence between information and entropy is used to interpret the entropy of a molecular gas as missing information about its internal state of motion. Our considerations show that thermodynamic information is principally composed of two parts which continually change in the course of gas-kinetic collisions. While the first part relates to energy carried by the individual molecules in the form of kinetic energy and in internal excitations, the second relates to information concerned with the location of the molecules within their own mean-free volumes. It is shown that this second kind of information is generated in gas-kinetic collisions and rapidly deteriorated and lost by quantum mechanical dispersion until it is re-gained in follow-on collisions. It is proposed that gas-kinetic collisions can be regarded as measurement processes in which information is continually gained, deteriorated and erased. As these processes occur naturally without any human intervention, it is argued that thermodynamic information—like entropy—fully qualifies as an objective physical quantity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.