Much of the current theory of adaptation is based on Gillespie's mutational landscape model (MLM), which assumes that the fitness values of genotypes linked by single mutational steps are independent random variables. On the other hand, a growing body of empirical evidence shows that real fitness landscapes, while possessing a considerable amount of ruggedness, are smoother than predicted by the MLM. In the present article we propose and analyze a simple fitness landscape model with tunable ruggedness based on the rough Mount Fuji (RMF) model originally introduced by Aita et al. in the context of protein evolution. We provide a comprehensive collection of results pertaining to the topographical structure of RMF landscapes, including explicit formulas for the expected number of local fitness maxima, the location of the global peak, and the fitness correlation function. The statistics of single and multiple adaptive steps on the RMF landscape are explored mainly through simulations, and the results are compared to the known behavior in the MLM model. Finally, we show that the RMF model can explain the large number of second-step mutations observed on a highly fit first-step background in a recent evolution experiment with a microvirid bacteriophage.T HE genetic adaptation of an asexual population to a novel environment is governed by the number and fitness effects of available beneficial mutations, their epistatic interactions, and the rate at which they are supplied (Sniegowski and Gerrish 2010). Despite the inherent complexity of this process, recent theoretical work has identified several robust statistical patterns of adaptive evolution (Orr 2005a,b). Most of these predictions were derived in the framework of Gillespie's mutational landscape model (MLM), which is based on three key assumptions (Gillespie 1983(Gillespie , 1984(Gillespie , 1991Orr 2002). First, selection is strong enough to prevent the fixation of deleterious mutations and mutation is sufficiently weak such that mutations emerge and fix one at a time [the strong selection/weak mutation (SSWM) regime]. Second, wild-type fitness is high, which allows one to describe the statistics of beneficial mutations using extreme value theory (EVT). Third, the fitness values of new mutants are uncorrelated with the fitness of the ancestor from which they arise. This last assumption implies that the fitness landscape underlying the adaptive process is maximally rugged with many local maxima and minima (Kauffman and Levin 1987;Kauffman 1993;Jain and Krug 2007), a limiting situation that is often referred to as the house of cards (HoC) landscape (Kingman 1978). Thus, the MLM is concerned with a population evolving in a HoC landscape under SSWM dynamics, starting from an initial state of high fitness.The validity of the SSWM assumption depends primarily on the population size N. Denoting the mutation rate by u and the typical selection strength by s, the criterion for the SSWM regime reads Nu ( 1 ( Ns, which can always be satisfied by a suitable choice o...
We study biological evolution in a high-dimensional genotype space in the regime of rare mutations and strong selection. The population performs an uphill walk which terminates at local fitness maxima. Assigning fitness randomly to genotypes, we show that the mean walk length is logarithmic in the number of initially available beneficial mutations, with a prefactor determined by the tail of the fitness distribution. This result is derived analytically in a simplified setting where the mutational neighborhood is fixed during the adaptive process, and confirmed by numerical simulations.
Starting from fitness correlation functions, we calculate exact expressions for the amplitude spectra of fitness landscapes as defined by Stadler [1996. Landscapes and their correlation functions. J. Math. Chem. 20, 1] for common landscape models, including Kauffman's NK-model, rough Mount Fuji landscapes and general linear superpositions of such landscapes. We further show that correlations decaying exponentially with the Hamming distance yield exponentially decaying spectra similar to those reported recently for a model of molecular signal transduction. Finally, we compare our results for the model systems to the spectra of various experimentally measured fitness landscapes. We claim that our analytical results should be helpful when trying to interpret empirical data and guide the search for improved fitness landscape models.
We study biological evolution on a random fitness landscape where correlations are introduced through a linear fitness gradient of strength c. When selection is strong and mutations rare the dynamics is a directed uphill walk that terminates at a local fitness maximum. We analytically calculate the dependence of the walk length on the genome size L. When the distribution of the random fitness component has an exponential tail, we find a phase transition of the walk length D between a phase at small c, where walks are short (D∼lnL), and a phase at large c, where walks are long (D∼L). For all other distributions only a single phase exists for any c>0. The considered process is equivalent to a zero temperature Metropolis dynamics for the random energy model in an external magnetic field, thus also providing insight into the aging dynamics of spin glasses.
Identifying and quantifying the benefits of sex and recombination is a long-standing problem in evolutionary theory. In particular, contradictory claims have been made about the existence of a benefit of recombination on high dimensional fitness landscapes in the presence of sign epistasis. Here we present a comparative numerical study of sexual and asexual evolutionary dynamics of haploids on tunably rugged model landscapes under strong selection, paying special attention to the temporal development of the evolutionary advantage of recombination and the link between population diversity and the rate of adaptation. We show that the adaptive advantage of recombination on static rugged landscapes is strictly transitory. At early times, an advantage of recombination arises through the possibility to combine individually occurring beneficial mutations, but this effect is reversed at longer times by the much more efficient trapping of recombining populations at local fitness peaks. These findings are explained by means of well-established results for a setup with only two loci. In accordance with the Red Queen hypothesis the transitory advantage can be prolonged indefinitely in fluctuating environments, and it is maximal when the environment fluctuates on the same time scale on which trapping at local optima typically occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.