The catalytic conversion of biomass and biogenic platform chemicals typically requires the use of solvents. Water is present already in the raw materials and in most cases a suitable solvent for the typically highly polar substrates. Hence, the development of novel catalytic routes for further processing would profit from the optimization of the reaction conditions in the aqueous phase mainly for energetic reasons by avoiding the initial water separation. Herein, we report the amination of biogenic alcohols in aqueous solutions using solid Ru-based catalysts and ammonia as a reactant. The influence of diff erent support materials and bimetallic catalysts is investigated for the amination of isomannide as a biogenic diol. Most importantly, the transferability of the reaction conditions to various other primary and secondary alcohols is successfully proved. Hence, water appears to be a suitable solvent for the sustainable production of biogenic amines and off ers great potential for further process development.
Succinic acid is a valuable biomass-derived platform molecule, which can be further catalytically converted into many industrially-relevant molecules such as γ-butyrolactone, 1,4-butanediol or tetrahydrofuran. The influence of the support nature...
Covalent triazine-based frameworks (CTFs) were synthesized in large scale from various monomers. The materials were post-synthetically modified with acid functionalities via gas-phase sulfonation. Acid capacities of up to 0.83 mmol g À1 at sulfonation degrees of up to 10.7 mol% were achieved. SulfonatedCTFs exhibit high specific surface area and porosity as well as excellent thermal stability under aerobic conditions (>300 C). Successful functionalization was verified investigating catalytic activity in the acidcatalyzed hydrolysis of cellobiose to glucose at 150 C in H 2 O. Catalytic activity is mostly affected by porosity, indicating that mesoporosity is beneficial for hydrolysis of cellobiose. Like other sulfonated materials, S-CTFs show low stability under hydrothermal reaction conditions. Recycling of the catalyst is challenging and significant amounts of sulfur leached out of the materials. Nevertheless, gas-phase sulfonation opens a path to tailored solid acids for application in various reactions. S-CTFs form the basis for multi-functional catalysts, containing basic coordination sites for metal catalysts, tunable structural parameters and surface acidity within one sole system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.