Peritoneal dialysis (PD) is limited by glucose-mediated peritoneal membrane (PM) fibrosis, angiogenesis, and ultrafiltration failure. Influencing PM integrity by pharmacologically targeting sodium-dependent glucose transporter (SGLT)-mediated glucose uptake has not been studied. In this study, wildtype C57Bl/6N mice were treated with high-glucose dialysate via an intraperitoneal catheter, with or without addition of selective SGLT2 inhibitor dapagliflozin. PM structural changes, ultrafiltration capacity, and peritoneal equilibration testing (PET) status for glucose, urea, and creatinine were analyzed. Expression of SGLT and facilitative glucose transporters (GLUT) was analyzed by real-time PCR, immunofluorescence, and immunohistochemistry. Peritoneal effluents were analyzed for cellular and cytokine composition. We found that peritoneal SGLT2 was expressed in mesothelial cells and in skeletal muscle. Dapagliflozin significantly reduced effluent transforming growth factor (TGF-β) concentrations, peritoneal thickening, and fibrosis, as well as microvessel density, resulting in improved ultrafiltration, despite the fact that it did not affect development of high-glucose transporter status. In vitro, dapagliflozin reduced monocyte chemoattractant protein-1 release under high-glucose conditions in human and murine peritoneal mesothelial cells. Proinflammatory cytokine release in macrophages was reduced only when cultured in high-glucose conditions with an additional inflammatory stimulus. In summary, dapagliflozin improved structural and functional peritoneal health in the context of high-glucose PD.
Endothelial cells can acquire a mesenchymal phenotype upon irritation [endothelial‐to‐mesenchymal transition (EndMT)]. Macrophages accumulate in the atherosclerotic plaque. This study addressed whether macrophages modulate EndMT and delineated a reciprocal effect of EndMT on macrophage functions in atherosclerosis. In atherosclerotic murine and human aortas, endothelial cells with mesenchymal markers were elevated by confocal microscopy and flow cytometric analysis. Increased EndMT master transcription factor Snail expression and extracellular matrix are consistent with enhanced EndMT in this condition. Hypoxia was detected in individual aortic EndMT cells in vivo and rapidly induced a similar EndMT phenotype in vitro. As a novel inducer of EndMT, macrophages, which are abundant in the atherosclerotic lesions, enhance mesothelial marker expression during coculture in vitro. In the reverse relationship, EndMT altered endothelial colony‐stimulating factor expression. Functionally, EndMT cell–conditioned media attenuated macrophage proliferation, antigen‐presenting cell marker expression, and TNF‐α production in response to oxidized LDL but increased oxidized LDL uptake and scavenger receptor expression. These experiments demonstrate that macrophages promote partial EndMT. In turn, EndMT cells modulate macrophage phenotype and lipid uptake. Our data suggest that EndMT shapes macrophage and endothelial cell phenotypes, thus affecting internal atherosclerotic plaque in addition to surface structure.—Helmke, A., Casper, J., Nordlohne, J., David, S., Haller, H., Zeisberg, E. M., von Vietinghoff, S. Endothelial‐to‐mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. FASEB J. 33, 2278–2289 (2019). http://www.fasebj.org
Reduced kidney function increases the risk for atherosclerosis and cardiovascular death. Leukocytes in the arterial wall contribute to atherosclerotic plaque formation. We investigated the role of fractalkine receptor CX3CR1 in atherosclerotic inflammation in renal impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.