Confocal immunofluorescence microscopy showed strong monocarboxylate transporter 2 (MCT2) labeling of Purkinje cell bodies and punctate labeling in the molecular layer. By immunogold cytochemistry, it could be demonstrated that the MCT2 immunosignal was concentrated at postsynaptic densities of parallel fiber-Purkinje cell synapses. The distribution of MCT2 transporters within the individual postsynaptic densities mimicked that of the delta2 glutamate receptor, as shown by use of two different gold-particle sizes. The MCT2 distribution was also compared with the distributions of other monocarboxylate transporters (MCT1 and MCT4). The MCT1 immunolabeling was localized in the endothelial cells, while MCT4 immunogold particles were associated with glial profiles, including those abutting the synaptic cleft of the parallel fiber-spine synapses. The postsynaptic density (PSD) molecules identified so far can be divided into five classes: receptors, their anchoring molecules, molecules involved in signal transduction, ion channels, and attachment proteins. Here, we provide evidence that this list of molecules must now be extended to comprise an organic molecule transporter: the monocarboxylate transporter MCT2. The present data suggest that MCT2 has specific transport functions related to the synaptic cleft and that this transporter may allow an influx of lactate derived from perisynaptic glial processes. The expression of MCT2 in synaptic membranes may allow energy supply to be tuned to the excitatory drive.
Aggregation of acetylcholine receptors (AChRs) in muscle fibers by nerve-derived agrin plays a key role in the formation of neuromuscular junctions. So far, the effects of agrin on muscle fibers have been studied in culture systems, transgenic animals, and in animals injected with agrin–cDNA constructs. We have applied purified recombinant chick neural and muscle agrin to rat soleus muscle in vivo and obtained the following results. Both neural and muscle agrin bind uniformly to the surface of innervated and denervated muscle fibers along their entire length. Neural agrin causes a dose-dependent appearance of AChR aggregates, which persist ≥7 wk after a single application. Muscle agrin does not cluster AChRs and at 10 times the concentration of neural agrin does not reduce binding or AChR-aggregating activity of neural agrin. Electrical muscle activity affects the stability of agrin binding and the number, size, and spatial distribution of the neural agrin–induced AChR aggregates. Injected agrin is recovered from the muscles together with laminin and both proteins coimmunoprecipitate, indicating that agrin binds to laminin in vivo. Thus, the present approach provides a novel, simple, and efficient method for studying the effects of agrin on muscle under controlled conditions in vivo.
We describe design and installation of a multi-mode microscopy core facility in an environment of varied research activity in life-sciences. The experimentators can select any combination of a) microscopes (upright, upright fixed-stage, inverted), b) microscopy modes (widefield, DIC, IRDIC, widefield epifluorescence, transmission LSM, reflection and fluorescence CLSM, MPLSM), c) imaging techniques (direct observation, video observation, photography, quantitative camera-recording, flying spot scanning), d) auxiliary systems (equipment for live specimen imaging, electrophysiology, time-coordinated laserscanning and electrophysiology, patch-clamp). The equipment is installed on one large vibration-isolating optical table (3m × 1.5m × 0.3m). Electronics, auxiliary equipment, and a fiber-coupled, remotely controlled Ar + -Kr + laser are mounted in a rack system fixed to the ceiling. The design of the shelves allows the head of the CSLM to be moved to any of the microscopes without increasing critical cable lengths. At the same time easy access to all the units is preserved. The beam of a Titanium-Sapphire laser, controlled by means of an EOM and a prism GVD, is coupled directly to the microscopes. Three mirrors mounted on a single precision translation table are integrated into the beam steering system so that the beam can easily be redirected to any of the microscopes. All the available instruments can be operated by the educated and trained user. The system is popular among researchers in neuroanatomy, embryology, cell biology, molecular biology -including the study of protein interactions, e.g. by means of FRET, and electrophysiology. Its colocalization with an EM facility promises to provide considerable synergy effects.
By making only minor modifications, we have adapted a conventional confocal scanning laser microscope for the recording of UV-excited fluorescence. An external argon ion laser provides the wavelengths 334, 351, and 364 nm for specimen illumination. In addition to substituting some optical components to obtain improved transmission and reflection properties in the UV, we have also adjusted the ray-path to compensate for the severe chromatic aberration of most conventional micmscope objectives in the UV. We have also tested mirror objectives, which are inherently free from chromatic aberrations. However, since these objectives are not of the immersion-type, and furthermore have rather low numerical apertures, they are of limited value in biomedical applications. Using the modified instrument, we have recorded specimens labeled with AMCA and Fluoro-Gold. At present the instrument is capable of recording optical sections with a thickness of 1.5 im when using an oil-immersion objective with a numerical aperture of 1.25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.