We generalize discrete variational models involving the infimal convolution (IC) of first and second order differences and the total generalized variation (TGV) to manifold-valued images. We propose both extrinsic and intrinsic approaches. The extrinsic models are based on embedding the manifold into an Euclidean space of higher dimension with manifold constraints. An alternating direction methods of multipliers can be employed for finding the minimizers. However, the components within the extrinsic IC or TGV decompositions live in the embedding space which makes their interpretation difficult. Therefore we investigate two intrinsic approaches: for Lie groups, we employ the group action within the models; for more general manifolds our IC model is based on recently developed absolute second order differences on manifolds, while our TGV approach uses an approximation of the parallel transport by the pole ladder. For computing the minimizers of the intrinsic models we apply gradient descent algorithms. Numerical examples demonstrate that our approaches work well for certain manifolds.
We are interested in restoring images having values in a symmetric Hadamard manifold by minimizing a functional with a quadratic data term and a total variation like regularizing term. To solve the convex minimization problem, we extend the Douglas-Rachford algorithm and its parallel version to symmetric Hadamard manifolds. The core of the Douglas-Rachford algorithm are reflections of the functions involved in the functional to be minimized. In the Euclidean setting the reflections of convex lower semicontinuous functions are nonexpansive. As a consequence, convergence results for Krasnoselski-Mann iterations imply the convergence of the Douglas-Rachford algorithm. Unfortunately, this general results does not carry over to Hadamard manifolds, where proper convex lower semicontinuous functions can have expansive reflections. However, splitting our restoration functional in an appropriate way, we have only to deal with special functions namely, several distance-like functions and an indicator functions of a special convex sets. We prove that the reflections of certain distance-like functions on Hadamard manifolds are nonexpansive which is an interesting result on its own. Furthermore, the reflection of the involved indicator function is nonexpansive on Hadamard manifolds with constant curvature so that the Douglas-Rachford algorithm converges here.Several numerical examples demonstrate the advantageous performance of the suggested algorithm compared to other existing methods as the cyclic proximal point algorithm or half-quadratic minimization. Numerical convergence is also observed in our experiments on the Hadamard manifold of symmetric positive definite matrices with the affine invariant metric which does not have a constant curvature.
Nonlocal patch-based methods, in particular the Bayes' approach of Lebrun, Buades and Morel [41], are considered as state-of-the-art methods for denoising (color) images corrupted by white Gaussian noise of moderate variance. This paper is the first attempt to generalize this technique to manifold-valued images. Such images, for example images with phase or directional entries or with values in the manifold of symmetric positive definite matrices, are frequently encountered in real-world applications. Generalizing the normal law to manifolds is not canonical and different attempts have been considered. Here we focus on a straightforward intrinsic model and discuss the relation to other approaches for specific manifolds. We reinterpret the Bayesian approach of Lebrun et al. [41] in terms of minimum mean squared error estimation, which motivates our definition of a corresponding estimator on the manifold. With this estimator at hand we present a nonlocal patch-based method for the restoration of manifold-valued images. Various proof of concept examples demonstrate the potential of the proposed algorithm.
This paper addresses the morphing of manifold-valued images based on the time discrete geodesic paths model of Berkels, Effland and Rumpf [9]. Although for our manifold-valued setting such an interpretation of the energy functional is not available so far, the model is interesting on its own. We prove the existence of a minimizing sequence within the set of L 2 (Ω, H) images having values in a finite dimensional Hadamard manifold H together with a minimizing sequence of admissible diffeomorphisms. To this end, we show that the continuous manifold-valued functions are dense in L 2 (Ω, H). We propose a space discrete model based on a finite difference approach on staggered grids, where we focus on the linearized elastic potential in the regularizing term. The numerical minimization alternates between i) the computation of a deformation sequence between given images via the parallel solution of certain registration problems for manifold-valued images, and ii) the computation of an image sequence with fixed first (template) and last (reference) frame based on a given sequence of deformations via the solution of a system of equations arising from the corresponding Euler-Lagrange equation. Numerical examples give a proof of the concept of our ideas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.