Access to excited-state structures and dynamics of pi-chromophor aggregates is needed to understand their fluorescence behavior and the properties of related materials. A quantum-chemistry-based protocol that provides quantitative and qualitative insight into fluorescence spectra has been applied to perylene bisimide dimers and provides excellent agreement with measured fluorescence spectra. Both dispersion and dipol-dipole interactions determine the preferred relative arrangements of the chromophores in ground and excited states of the dimer. An exciton trapping mechanism is identified, which may limit the energy transfer properties of perylene bisimide and other dye materials.
The orientational dependence of charge carrier mobilities in organic semiconductor crystals and the correlation with the crystal structure are investigated by means of quantum chemical first principles calculations combined with a model using hopping rates from Marcus theory. A master equation approach is presented which is numerically more efficient than the Monte Carlo method frequently applied in this context. Furthermore, it is shown that the widely used approach to calculate the mobility via the diffusion constant along with rate equations is not appropriate in many important cases. The calculations are compared with experimental data, showing good qualitative agreement for pentacene and rubrene. In addition, charge transport properties of core-fluorinated perylene bisimides are investigated.
Quantum chemical protocols explaining the crystal structures and the visible light absorption properties of 3,4:9,10-perylene tetracarboxylic acid bisimide (PBI) derivates are proposed. Dispersion-corrected density functional theory has provided an intermolecular potential energy of PBI dimers showing several energetically low-lying minima, which corresponds well with the packing of different PBI dyes in the solid state. While the dispersion interaction is found to be crucial for the binding strength, the minimum structures of the PESs are best explained by electrostatic interactions. Furthermore, a method is introduced, which reproduces the photon energies at the absorption maxima of PBI pigments within 0.1 eV. It is based on time-dependent Hartree-Fock (TD-HF) excitation energies calculated for PBI dimers with the next-neighbor arrangement in the pigment and incorporates crystal packing effects. This success provides clear evidence that the electronically excited states, which determine the color of these pigments, have no significant charge-transfer character. The developed protocols can be applied in a routine manner to understand and to predict the properties of such pigments, which are important materials for organic solar cells and (opto-)electronic devices.
In this work we describe a study of the ground and first excited state structures and energetics of a dihydroxy-derivative of [2.2]paracyclophane (PC), the pseudo-ortho-dihydroxy[2.2]paracyclophane (o-DHPC), also termed 4,12-dihydroxy[2.2]paracyclophane. In order to understand the electronic interactions between the two pi-systems, the molecule is investigated by REMPI spectroscopy in a free jet and by quantum chemical calculations. REMPI-spectra of the cluster with one water molecule were also obtained and aid in the interpretation. The origin of the S(1) <-- S(0) transition lies at 31,483 cm(-1) (3.903 eV) for o-DHPC and 31,263 cm(-1) (3.876 eV) for the o-DHPC x H(2)O cluster. An adiabatic excitation energy of 3.87 eV was computed for the S(1) <-- S(0) transition in o-DHPC. The SCS-CC2 calculations deviate by less than 0.1 eV for the adiabatic excitation energies of PC, o-DHPC and the related aromatic molecules benzene and phenol. Considerable activity in a breathing vibration of 190 cm(-1) is found in the S(1) state of o-DHPC and o-DHPC x H(2)O, in agreement with the computed SCS-CC2 value of 185 cm(-1). Further vibrations appear at +11 cm(-1) and +54 cm(-1) in o-DHPC. The computations and the available experimental data of the parent PC show that both PC and o-DHPC are rather flexible with respect to motions of the benzene moieties.While PC has a double minimum potential energy with respect to the torsional motion, a single-minimum structure is found for the ground state of o-DHPC. The geometry change upon excitation is less pronounced in o-DHPC as compared to PC. Two of the three possible rotational conformers of the OH groups were found to have similar energies, but spectral hole burning shows that the spectra are dominated by a single rotamer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.