We present new constraints on the frequency dependence of the cosmic birefringence angle from the Planck Data Release 4 polarization maps. An axion field coupled to electromagnetism predicts a nearly frequency-independent birefringence angle, βν = β, while Faraday rotation from local magnetic fields and Lorentz violating theories predict a cosmic birefringence angle that is proportional to the frequency, ν, to the power of some integer n, βν ∝ νn. In this work, we first sampled βν individually for each polarized HFI frequency band in addition to the 70 GHz channel from the LFI. We also constrained a power law formula for the birefringence angle, βν = β0(ν/ν0)n, with ν0 = 150 GHz. For a nearly full-sky measurement, fsky = 0.93, we find β0 = 0.26° ±0.11° (68% C.L.) and n = −0.45−0.82+0.61 when we ignore the intrinsic EB correlations of the polarized foreground emission, and β0 = 0.33° ±0.12° and n = −0.37−0.64+0.49 when we use a filamentary dust model for the foreground EB. Next, we used all the polarized Planck maps, including the 30 and 44 GHz frequency bands. These bands have a negligible foreground contribution from polarized dust emission and we thus treated them separately. Without any modeling of the intrinsic EB of the foreground, we generally find that the inclusion of the 30 and 44 GHz frequency bands raises the measured values of βν and tightens n. At nearly full-sky, we measure β0 = 0.29°−0.11°+0.10° and n = −0.35−0.47+0.48. Assuming no frequency dependence, we measure β = 0.33° ±0.10°. If our measurements have effectively mitigated the EB of the foreground, our constraints are consistent with a mostly frequency-independent signal of cosmic birefringence.
The observed pattern of linear polarization of the cosmic microwave background photons is a sensitive probe of physics violating parity symmetry under inversion of spatial coordinates. A new parity-violating interaction might have rotated the plane of linear polarization by an angle β as the cosmic microwave background photons have been traveling for more than 13 billion years. This effect is known as "cosmic birefringence." In this paper, we present new measurements of cosmic birefringence from a joint analysis of polarization data from two space missions, Planck and WMAP. This dataset covers a wide range of frequencies from 23 to 353 GHz. We measure β ¼ 0.342°þ 0.094°− 0.091°[ 68% confidence level (CL)] for nearly full-sky data, which excludes β ¼ 0 at 99.987% CL. This corresponds to the statistical significance of 3.6σ. There is no evidence for frequency dependence of β. We find a similar result, albeit with a larger uncertainty, when removing the Galactic plane from the analysis.
By converting conventional spin-singlet Cooper pairs to polarized spin-triplet pairs, it is possible to sustain long-ranged spin-polarized supercurrents flowing through strongly polarized ferromagnets. Obtaining such a conversion via spin-orbit interactions, rather than magnetic inhomogeneities, has recently been explored in the literature. A challenging aspect with regard to experimental detection has been that in order for Rashba spinorbit interactions, present e.g. at interfaces due to inversion symmetry breaking, to generate such long-ranged supercurrents, an out-of-plane component of the magnetization is required. This limits the choice of materials and can induce vortices in the superconducting region complicating the interpretation of measurements. Therefore, it would be desirable to identify a way in which Rashba spin-orbit interactions can induce long-ranged supercurrents for purely in-plane rotations of the magnetization. Here, we show that this is possible in a lateral Josephson junction where two superconducting electrodes are placed in contact with a ferromagnetic film via two thin, heavy normal metals. The magnitude of the supercurrent in such a setup becomes tunable by the in-plane magnetization angle when using only a single magnetic layer. These results could provide a new and simpler way to generate controllable spin-polarized supercurrents than previous experiments which utilized complicated magnetically textured Josephson junctions. arXiv:1906.07725v1 [cond-mat.supr-con]
The polarization of the cosmic microwave background (CMB) can be used to search for parity-violating processes like that predicted by a Chern-Simons coupling to a light pseudoscalar field. Such an interaction rotates E modes into E modes in the observed CMB signal through an effect known as cosmic birefringence. Even though isotropic birefringence can be confused with the rotation produced by a miscalibration of the detectors' polarization angles, the degeneracy between both effects is broken when Galactic foreground emission is used as a calibrator. In this work, we use realistic simulations of the High-Frequency Instrument of the Planck mission to test the impact that Galactic foreground emission and instrumental systematics have on the recent birefringence measurements obtained through this technique. Our results demonstrate the robustness of the methodology against the miscalibration of polarization angles and other systematic effects, like intensity-to-polarization leakage, beam leakage, or cross-polarization effects. However, our estimator is sensitive to the EB correlation of polarized foreground emission. Here we propose to correct the bias induced by dust EB by modeling the foreground signal with templates produced in Bayesian component-separation analyses that fit parametric models to CMB data. Acknowledging the limitations of currently available dust templates like that of the Commander sky model, high-precision CMB data and a characterization of dust beyond the modified blackbody paradigm are needed to obtain a definitive measurement of cosmic birefringence in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.