The burden of self-injury among offenders undergoing inpatient treatment in forensic psychiatry is substantial. This exploratory study aims to add to the previously sparse literature on the correlates of self-injury in inpatient forensic patients with schizophrenia spectrum disorders (SSD). Employing a sample of 356 inpatients with SSD treated in a Swiss forensic psychiatry hospital, patient data on 512 potential predictor variables were retrospectively collected via file analysis. The dataset was examined using supervised machine learning to distinguish between patients who had engaged in self-injurious behavior during forensic hospitalization and those who had not. Based on a combination of ten variables, including psychiatric history, criminal history, psychopathology, and pharmacotherapy, the final machine learning model was able to discriminate between self-injury and no self-injury with a balanced accuracy of 68% and a predictive power of AUC = 71%. Results suggest that forensic psychiatric patients with SSD who self-injured were younger both at the time of onset and at the time of first entry into the federal criminal record. They exhibited more severe psychopathological symptoms at the time of admission, including higher levels of depression and anxiety and greater difficulty with abstract reasoning. Of all the predictors identified, symptoms of depression and anxiety may be the most promising treatment targets for the prevention of self-injury in inpatient forensic patients with SSD due to their modifiability and should be further substantiated in future studies.
Background: Rule-violating behaviour in the form of substance misuse has been studied primarily within the context of prison settings, but not in forensic psychiatric settings. Aims: Our aim was to explore factors that are associated with substance misuse during hospitalisation in patients among those patients in a Swiss forensic psychiatric inpatient unit who were suffering from a disorder along the schizophrenia spectrum. Methods: From a database of demographic, clinical and offending data on all residents at any time between 1982 and 2016 in the forensic psychiatric hospital in Zurich, 364 cases fulfilled diagnostic criteria for schizophrenia or a schizophrenia-like illness and formed our sample. Any confirmed use of alcohol or illicit substances during admission (yes/no) was the dependent variable. Its relationship to all 507 other variables was explored by machine learning. To counteract overfitting, data were divided into training and validation set. The best model from the training set was tested on the validation set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.