Abstract:The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC) emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR) rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.
In this work, the potential for improving the trade-off between fuel consumption and tailpipe NOx emissions through variable engine calibration (VEC) is demonstrated for both conventional and hybrid electric vehicles (HEV). First, a preoptimization procedure for the engine operation is proposed to address the challenge posed by the large number of engine control inputs. By excluding infeasible and suboptimal operation offline, an engine model is developed that can be evaluated efficiently during online optimization. Next, dynamic programming is used to find the optimal trade-off between fuel consumption and tailpipe NOx emissions for various vehicle configurations and driving missions. Simulation results show that for a conventional vehicle equipped with VEC and gear optimization run on the worldwide harmonized light vehicles test cycle (WLTC), the fuel consumption can be reduced by 5.4% at equivalent NOx emissions. At equivalent fuel consumption, the NOx emissions can be reduced by 80%. For an HEV, the introduction of VEC, in addition to the optimization of the torque split and the gear selection, drastically extended the achievable trade-off between fuel consumption and tailpipe NOx emissions in simulations. Most notably, the region with very low NOx emissions could only be reached with VEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.