We use the synthetic control method to analyze the effect of face masks on the spread of COVID-19 in Germany. Our identification approach exploits regional variation in the point in time when wearing of face masks became mandatory in public transport and shops. Depending on the region we consider, we find that face masks reduced the number of newly registered severe acute respiratory syndrome coronavirus 2 infections between 15% and 75% over a period of 20 days after their mandatory introduction. Assessing the credibility of the various estimates, we conclude that face masks reduce the daily growth rate of reported infections by around 47%.
We use the synthetic control method to analyze the effect of face masks on the spread of Covid-19 in Germany. Our identification approach exploits regional variation in the point in time when face masks became compulsory. Depending on the region we analyse, we find that face masks reduced the cumulative number of registered Covid-19 cases between 2.3% and 13% over a period of 10 days after they became compulsory. Assessing the credibility of the various estimates, we conclude that face masks reduce the daily growth rate of reported infections by around 40%.
The electronic properties of bilayer graphene strongly depend on relative orientation of the two atomic lattices. Whereas Bernal-stacked graphene is most commonly studied, a rotational mismatch between layers opens up a whole new field of rich physics, especially at small interlayer twist. Here we report on magnetotransport measurements on twisted graphene bilayers, prepared by folding of single layers. These reveal a strong dependence on the twist angle, which can be estimated by means of sample geometry. At small rotation, superlattices with a wavelength in the order of 10 nm arise and are observed by friction atomic force microscopy. Magnetotransport measurements in this small-angle regime show the formation of satellite Landau fans. These are attributed to additional Dirac singularities in the band structure and discussed with respect to the wide range of interlayer coupling models.
In this contribution we present a novel two-dimensional Zr-based metal-organic framework (MOF) which offers the possibility for delamination and post-synthetic photochemical modification at the linker molecule derived from benzophenone-4,4'-dicarboxylic acid (H bzpdc). The new Zr-bzpdc-MOF crystallizes in the orthorhombic system as crystals with rhombic shape. The structure was determined from single-crystal diffraction data. The MOF is stable up to 300 °C in air and exhibits a moderate BET surface area of 650 m g . The material can be obtained as thin sheets of a few nanometer thickness. Single crystals were modified post-synthetically, exploiting the intrinsic reactivity of the benzophenone group with C-H bond containing molecules. In this way, the surface properties of the MOF crystals (e.g., dispersibility in different solvents) can be changed drastically. Delamination and adaptation of the surface chemistry open up novel ways for shaping MOFs, for example, for the incorporation into polymer composites, and pave the way for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.