Previous anatomical studies in monkeys have shown that forelimb motor representation is located caudal to hindlimb representation within the dorso-rostral dentate nucleus. Here we investigate human dentate nucleus motor somatotopy by means of ultra-highfield (7 T) functional magnetic brain imaging (fMRI). Twenty five young healthy males participated in the study. Simple finger and foot movement tasks were performed to identify dentate nucleus motor areas. Recently developed normalization procedures for group analyses were used for the cerebellar cortex and the cerebellar dentate nucleus. Cortical activations were in good accordance with the known somatotopy of the human cerebellar cortex. Dentate nucleus activations following motor tasks were found in particular in the ipsilateral dorso-rostral nucleus. Activations were also present in other parts of the nucleus including the contralateral side, and there was some overlap between the body part representations. Within the ipsilateral dorso-rostral dentate, finger activations were located caudally compared to foot movement-related activations in fMRI group analysis. Likewise, the centre of gravity (COG) for the finger activation was more caudal than the COG of the foot activation across participants. A multivariate analysis of variance (MANOVA) on the x, y, and z coordinates of the COG indicated that this difference was significant (P = 0.043). These results indicate that in humans, the lower and upper limbs are arranged rostro-caudally in the dorsal aspect of the dentate nucleus, which is consistent with studies in non-human primates.
We describe the four-laser airborne infrared (FLAIR) instrument, a tunable diode laser absorption spectrometer designed for simultaneous high-sensitivity in situ measurements offour atmospheric trace gases in the troposphere, The FLAIR spectrometer was employed during the large-scale airborne research campaign on tropospheric ozone (TROPOZ 11) in 1991 and was used to measure CO, H 2 0 2 , HCHO, and N0 2 in the free troposphere where detection limits below 100 parts in 10 12 by volume were achieved,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.