To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)–specific monoclonal antibody (mAb), the Escherichia coli–expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli–expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient–derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes.
Key points
• The antibody showed cross-reactivity with capsid proteins of different hepeviruses.
• The linear epitope of the antibody was mapped in a partially surface-exposed region.
• The antibody detected native HEV-3 antigen in infected mammalian cells.
The hepatitis E virus (HEV) causes acute and chronic hepatitis in humans. Investigation of HEV replication is hampered by the lack of broadly applicable, efficient cell culture systems and tools for site-directed mutagenesis of HEV. The cell culture-adapted genotype 3c strain 47832c, which represents a typical genotype predominantly detected in Europe, has previously been used for several basic and applied research studies. Here, a plasmid-based reverse genetics system was developed for this strain, which efficiently rescued the infectious virus without the need for in vitro RNA transcription. The cotransfection of T7 RNA polymerase-expressing BSR/T7 cells with one plasmid encoding the full-length viral genome and two helper plasmids encoding vaccinia virus capping enzymes resulted in the production of infectious HEV, which could be serially passaged on A549/D3 cells. The parental and recombinant virus exhibited similar replication kinetics. A single point mutation creating an additional restriction enzyme site could be successfully introduced into the virus genome of progeny virus, indicating that the system is suitable for site-directed mutagenesis. This system is the first plasmid-based HEV reverse genetics system, as well as the first reverse genetics system for HEV genotype 3c, and should therefore be of broad use for basic and applied HEV research.
The hepatitis E virus (HEV) can cause hepatitis E in humans. Recently, the occurrence of HEV strains carrying insertions in their hypervariable genome region has been described in chronically infected patients. The insertions originate from human genes or from the HEV genome itself. Although their distinct functions are largely unknown, an involvement in efficient cell culture replication was shown for some strains. The HEV strain 47832c, originally isolated from a chronically infected transplant patient, carries a bipartite insertion composed of HEV genome duplications. Here, several mutants with deletions and substitutions of the insertion were generated and tested in cell culture. Complete deletion of the insertion abolished virus replication and even a single glycine to arginine substitution led to reduced cell culture growth. A mutant encoding a frameshift of the inserted sequence was not infectious, whereas a mutant carrying synonymous codons in this region replicated similar like the wild type. Substitution of the insertion with the S17 insertion from HEV strain Kernow C1-p6 did not result in viable virus, which might indicate strain- or cell type-specificity of the insertions. Generally, the translated amino acid sequence of the insertion, but not the RNA sequence, seems to be responsible for the observed effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.