The inferred cost of work-related stress call for prevention strategies that aim at detecting early warning signs at the workplace. This paper goes one step towards the goal of developing a personal health system for detecting stress. We analyze the discriminative power of electrodermal activity (EDA) in distinguishing stress from cognitive load in an office environment. A collective of 33 subjects underwent a laboratory intervention that included mild cognitive load and two stress factors, which are relevant at the workplace: mental stress induced by solving arithmetic problems under time pressure and psychosocial stress induced by social-evaluative threat. During the experiments, a wearable device was used to monitor the EDA as a measure of the individual stress reaction. Analysis of the data showed that the distributions of the EDA peak height and the instantaneous peak rate carry information about the stress level of a person. Six classifiers were investigated regarding their ability to discriminate cognitive load from stress. A maximum accuracy of 82.8% was achieved for discriminating stress from cognitive load. This would allow keeping track of stressful phases during a working day by using a wearable EDA device.
Manic depression, also known as bipolar disorder, is a common and severe form of mental disorder. The European research project MONARCA aims at developing and validating mobile technologies for multiparametric, long term monitoring of physiological and behavioral information relevant to bipolar disorder. One aspect of MONARCA is to investigate the long term monitoring of Electrodermal activity (EDA) to support the diagnosis and treatment of bipolar disorder patients. EDA is known as an indicator of the emotional state and the stress level of a person. To realize a long-term monitoring of the EDA, the integration of the sensor system in the shoe or sock is a promising approach. This paper presents a first step towards such a sensor system. In a feasibility study including 8 subjects, we investigate the correlation between EDA measurements at the fingers, which is the most established sensing site, with measurements of the EDA at the feet. The results indicate that 88% of the evoked skin conductance responses (SCRs) occur at both sensing sites. When using an action movie as psychophysiologically activating stimulus, we have found weaker reactivity in the foot than in the hand EDA. The results also suggest that the influence of moderate physical activity on EDA measurements is low and has a similar effect for both recording sites. This suggests that the foot recording location is suitable for recordings in daily life even in the presence of moderate movement.
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract-Inertial and magnetic sensors offers a sourceless and mobile option to obtain body posture and motion for personal sports or healthcare assistants, if sensors could be unobtrusively integrated in casual garments and accessories. We present in this paper design, implementation, and evaluation results for a novel miniature attitude and heading reference system (AHRS) named ETHOS using current off-the-shelf technologies.ETHOS has a unit size of 2.5cm 3 , which is substantially below most currently marketed attitude heading reference systems, while the unit contains processing resources to estimate its orientation online. Results on power consumption in relation to sampling frequency and sensor use are presented. Moreover two sensor fusion algorithms to estimate orientation: a quaternionbased Kalman-, and a complementary filter. Evaluations of orientation estimation accuracy in static and dynamic conditions revealed that complementary filtering reached sufficient accuracy while consuming 46% of a Kalman's power. The system runtime of ETHOS was found to be 10 hours at a complementary filter update rate of 128Hz. Furthermore, we found that a ETHOS prototype functioned with a sufficient accuracy in estimating human movement in real-life conditions using an arm rehabilitation robot.
Template-based approaches using acceleration signals have been proposed for gait-based biometric authentication. In daily life a number of real-world factors affect the users' gait and we investigate their effects on authentication performance. We analyze the effect of walking speed, different shoes, extra load, and the natural variation over days on the gait. Therefore we introduce a statistical Measure of Similarity (MOS) suited for template-based pattern recognition. The MOS and actual authentication show that these factors may affect the gait of an individual at a level comparable to the variations between individuals. A change in walking speed of 1km/h for example has the same MOS of 20% as the in-between individuals' MOS. This limits the applicability of gait-based authentication approaches. We identify how these real-world factors may be compensated and we discuss the opportunities for gaitbased context-awareness in wearable computing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.