SummaryWe present experimental results and theoretical simulations of the adsorption behavior of the metal–organic precursor Co2(CO)8 on SiO2 surfaces after application of two different pretreatment steps, namely by air plasma cleaning or a focused electron beam pre-irradiation. We observe a spontaneous dissociation of the precursor molecules as well as autodeposition of cobalt on the pretreated SiO2 surfaces. We also find that the differences in metal content and relative stability of these deposits depend on the pretreatment conditions of the substrate. Transport measurements of these deposits are also presented. We are led to assume that the degree of passivation of the SiO2 surface by hydroxyl groups is an important controlling factor in the dissociation process. Our calculations of various slab settings, using dispersion-corrected density functional theory, support this assumption. We observe physisorption of the precursor molecule on a fully hydroxylated SiO2 surface (untreated surface) and chemisorption on a partially hydroxylated SiO2 surface (pretreated surface) with a spontaneous dissociation of the precursor molecule. In view of these calculations, we discuss the origin of this dissociation and the subsequent autocatalysis.
The current-driven motion of skyrmions in MnSi and FeGe thinned single crystals could be initiated at current densities of the order of 10
6
A/m
2
, five orders of magnitude smaller than for magnetic domain walls. The technologically crucial step of replicating these results in thin films has not been successful to-date, but the reasons are not clear. Elucidating them requires analyzing system characteristics at scales of few nm where the key Dzyaloshinskii-Moriya (DM) interactions vary, and doing so in near-application conditions, i.e. in systems at room temperature, capped with additional layers for oxidation protection. In this work’s magnetic force microscopy (MFM) studies of magnetron-sputtered Ir/Co/Pt-multilayers we show skyrmions that are smaller than previously observed, are not circularly symmetric, and are pinned to 50-nm wide areas where the DM interaction is higher than average. This finding matches our measurement of inhomogeneity of the magnetic moment areal density, which amounts to a standard deviation of the Co layer thickness of 0.3 monolayers in our 0.6 nm thick Co layers. This likely originates in small Co layer thickness variation and alloying. These film characteristics must be controlled with greater precision to preclude skyrmion pinning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.