When talking about blockchain technology in academia, business, and society, frequently generalizations are still heared about its-supposedly inherent-enormous energy consumption. This perception inevitably raises concerns about the further adoption of blockchain technology, a fact that inhibits rapid uptake of what is widely considered to be a groundbreaking and disruptive innovation. However, blockchain technology is far from homogeneous, meaning that blanket statements about its energy consumption should be reviewed with care. The article is meant to bring clarity to the topic in a holistic fashion, looking beyond claims regarding the energy consumption of Bitcoin, which have, so far, dominated the discussion.
In this article, we present a new descriptive model for industrial flexibility with respect to power consumption. The advancing digitization in the energy sector opens up new possibilities for utilizing and automatizing the marketing of flexibility potentials and therefore facilitates a more advanced energy management. This requires a standardized description and modeling of power-related flexibility. The data model in this work has been developed in close collaboration with several partners from different industries in the context of a major German research project. A suitable set of key figures allows for also describing complex production processes that exhibit interdependencies and storage-like properties. The data model can be applied to other areas as well, e.g., power plants, plug-in electric vehicles, or power-related flexibility of households.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.