In the one-dimensional Bose-Hubbard model with on-site and nearest-neighbor interactions, a gapped phase characterized by an exotic non-local order parameter emerges, the Haldane insulator. Bose-Hubbard models with cavity-mediated global range interactions display phase diagrams, which are very similar to those with nearest-neighbor repulsive interactions, but the Haldane phase remains elusive there. Here we study the one-dimensional Bose-Hubbard model with nearest-neighbor and cavity-mediated global-range interactions and scrutinize the existence of a Haldane Insulator phase. With the help of extensive quantum Monte-Carlo simulations we find that in the Bose-Hubbard model with only cavity-mediated global-range interactions no Haldane phase exists. For a combination of both interactions, the Haldane Insulator phase shrinks rapidly with increasing strength of the cavity-mediated global-range interactions. Thus, in spite of the otherwise very similar behavior the mean-field like cavity-mediated interactions strongly suppress the non-local order favored by nearest-neighbor repulsion in some regions of the phase diagram. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.