High-speed communication systems rely on spectrally efficient modulation formats that encode information both on the amplitude and on the phase of an electromagnetic carrier. Coherent detection of such signals typically uses rather complex receiver schemes, requiring a continuous-wave (c.w.) local oscillator (LO) as a phase reference and a mixer circuit for spectral down-conversion. In optical communications, the so-called Kramers-Kronig (KK) scheme has been demonstrated to greatly simplify the receiver, reducing the hardware to a single photodiode [1][2][3] . In this approach, an LO tone is transmitted along with the signal, and the amplitude and phase of the complex signal envelope are reconstructed from the photocurrent by digital signal processing. This reconstruction exploits the fact that the real and the imaginary part, or, equivalently, the amplitude and the phase of an analytic signal are connected by a KK-type relation [4][5][6] . Here, we transfer the KK scheme to high-speed wireless communications at THz carrier frequencies. We use a Schottky-barrier diode (SBD) as a nonlinear element and generalize the theory of KK processing to account for the non-quadratic characteristics of this device. Using 16-state quadrature amplitude modulation (16QAM), we transmit a net data rate of 115 Gbit/s at a carrier frequency of 0.3 THz over a distance of 110 m.
The numerical solution of the Vlasov-Fokker-Planck equation is a well established method to simulate the dynamics, including the self-interaction with its own wake field, of an electron bunch in a storage ring. In this paper we present Inovesa, a modularly extensible program that uses OpenCL to massively parallelize the computation. It allows a standard desktop PC to work with appropriate accuracy and yield reliable results within minutes. We provide numerical stability-studies over a wide parameter range and compare our numerical findings to known results. Simulation results for the case of coherent synchrotron radiation will be compared to measurements that probe the effects of the micro-bunching instability occurring in the short bunch operation at ANKA. It will be shown that the impedance model based on the shielding effect of two parallel plates can not only describe the instability threshold, but also the presence of multiple regimes that show differences in the emission of coherent synchrotron radiation.
Dedicated optics with extremely short electron bunches enable synchrotron light sources to generate intense coherent THz radiation. The high degree of spatial compression in this so-called low-αc optics entails a complex longitudinal dynamics of the electron bunches, which can be probed studying the fluctuations in the emitted terahertz radiation caused by the micro-bunching instability ("bursting"). This article presents a "quasi-instantaneous" method for measuring the bursting characteristics by simultaneously collecting and evaluating the information from all bunches in a multi-bunch fill, reducing the measurement time from hours to seconds. This speed-up allows systematic studies of the bursting characteristics for various accelerator settings within a single fill of the machine, enabling a comprehensive comparison of the measured bursting thresholds with theoretical predictions by the bunched-beam theory. This paper introduces the method and presents first results obtained at the ANKA synchrotron radiation facility.
Electron accelerators and synchrotrons can be operated to provide short emission pulses due to longitudinally compressed or sub-structured electron bunches. Above a threshold current, the high charge density leads to the micro-bunching instability and the formation of sub-structures on the bunch shape. These time-varying sub-structures on bunches of picoseconds-long duration lead to bursts of coherent synchrotron radiation in the terahertz frequency range. Therefore, the spectral information in this range contains valuable information about the bunch length, shape and substructures. Based on the KAPTURE readout system, a 4-channel single-shot THz spectrometer capable of recording 500 million spectra per second and streaming readout is presented. First measurements of time-resolved spectra are compared to simulation results of the Inovesa Vlasov-Fokker-Planck solver. The presented results lead to a better understanding of the bursting dynamics especially above the micro-bunching instability threshold.
At KARA, the KArlsruhe Research Accelerator of the KIT synchrotron, the so called short bunch operation mode allows the reduction of the bunch length down to a few picoseconds. The microbunching instability resulting from the high degree of longitudinal compression leads to fluctuations in the emitted THz radiation, referred to as bursting. For extremely compressed bunches at KARA, bursting occurs not only in one but in two different bunch-current ranges that are separated by a stable region. This work presents measurements of the bursting behavior in both regimes. Good agreement is found between data and numerical solutions of the Vlasov-Fokker-Planck equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.