BackgroundAstrocyte elevated gene 1 (AEG-1), an important oncogene, has been shown to be overexpressed in several types of cancers. In colorectal cancer (CRC), the protein level of AEG-1 is up-regulated in tumour tissue compared to normal mucosa, showing prognostic significance. Since little is known about the transcriptional level of AEG-1 expression and its biological pathway in CRC the aim of the present study was to examine the relationship of AEG-1 mRNA expression, the protein level and clinicopathological variables as well as its biology pathway in CRC.Material and methodsThe mRNA expression of AEG-1 was analysed by qPCR in fresh frozen patient samples including 156 primary tumours, along with the corresponding normal mucosa, and in five colon cancer cell lines, SW480, SW620, KM12C, KM12SM and KM12L4a. AEG-1 protein expression was investigated by immunohistochemistry in paraffin-embedded materials from 74 distant normal mucosa, 107 adjacent mucosa, 158 primary tumour, 35 lymph node metastasis and 9 liver metastasis samples. In addition, the AEG-1 protein expression was elucidated in the cell lines by Western blot.ResultsThe lymph node metastatic cell line SW620 had a significantly higher AEG-1 mRNA (0.27 ± 0.02) expression compared to the primary tumour cell line SW480 (0.17 ± 0.04, p = 0.026). AEG-1 expression at the mRNA level and/or the protein level was significantly up-regulated gradually from normal mucosa to primary CRC, and then to lymph node metastasis and finally to liver metastasis (p < 0.05). There were significant associations of AEG-1 mRNA expression with tumour location (p = 0.047), as well as mRNA and protein expression with the tumour stage (p < 0.03). Furthermore AEG-1 protein expression was positively related to biological variables including NF-κB, p73, Rad50 and apoptosis (p < 0.05).ConclusionAEG-1 is up-regulated, at the mRNA and the protein level, during CRC development and aggressiveness, and is related to tumour location and stage. It may play its role in CRC through the NF-κB signaling pathway.
Human organogenesis remains relatively unexplored for ethical and practical reasons. Here, we report the establishment of a single-cell transcriptome atlas of the human fetal pancreas between 7 and 10 post-conceptional weeks of development. To interrogate cell–cell interactions, we describe InterCom, an R-Package we developed for identifying receptor–ligand pairs and their downstream effects. We further report the establishment of a human pancreas culture system starting from fetal tissue or human pluripotent stem cells, enabling the long-term maintenance of pancreas progenitors in a minimal, defined medium in three-dimensions. Benchmarking the cells produced in 2-dimensions and those expanded in 3-dimensions to fetal tissue identifies that progenitors expanded in 3-dimensions are transcriptionally closer to the fetal pancreas. We further demonstrate the potential of this system as a screening platform and identify the importance of the EGF and FGF pathways controlling human pancreas progenitor expansion.
BackgroundMicroRNAs (miRNAs) are endogenously expressed noncoding RNAs with important biological and pathological functions. Although several studies have shown that microRNA-31 (miR-31) is obviously up-regulated in colorectal cancer (CRC), there is no study on the functional roles of miR-31 in CRC.MethodsAnti-miR™ miRNA 31 inhibitor (anti-miR-31) is a sequence-specific and chemically modified oligonucleotide to specifically target and knockdown miR-31 molecule. The effect of anti-miR-31 transfection was investigated by real-time PCR. HCT-116p53+/+ and HCT-116p53-/-colon cancer cells were treated by anti-miR-31 with or without 5-fluorouracil (5-FU), cell proliferation was determined by MTT assay; apoptosis was detected by DAPI staining; cell cycle was evaluated by flow cytometry; colony formation, migration and invasion assays were performed to investigate the effect of suppression of miR-31 on the cell lines.ResultsReal-time PCR results showed that anti-miR-31 was efficiently introduced into the cells and reduced miR-31 levels to 44.1% in HCT-116p53+/+ and 67.8% in HCT-116p53-/-cell line (p = 0.042 and 0.046). MTT results showed that anti-miR-31 alone had no effect on the proliferation of HCT-116p53+/+ or HCT-116p53-/-. However, when combined with 5-FU, anti-miR-31 inhibited the proliferation of the two cell lines as early as 24 h after exposure to 5-FU (p = 0.038 and 0.044). Suppression of miR-31 caused a reduction of the migratory cells by nearly 50% compared with the negative control in both HCT-116p53+/+ and HCT-116p53-/-(p = 0.040 and 0.001). The invasive ability of the cells were increased by 8-fold in HCT-116p53+/+ and 2-fold in HCT-116p53-/- (p = 0.045 and 0.009). Suppression of miR-31 had no effect on cell cycle and colony formation (p > 0.05).ConclusionsSuppression of miR-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells.
BackgroundDicer is aberrantly expressed in several types of cancers. Applying real-time PCR, we detected the expression of Dicer mRNA in normal mucosa (n = 162), primary colorectal cancer (CRC) (n = 162) and liver metastasis (n = 37), and analysed the relationship between Dicer expression and clinicopathological features. We also correlated the expression of Dicer mRNA to the miRNA expression of miR-141, miR-200a, miR-200b, mir-200c and miR-429 in liver metastases.MethodsRT-PCR and qPCR were used to analyse the Dicer expression in normal mucosa, primary tumour and liver metastasis by using the High Capacity cDNA Reverse Transcription Kit and TaqMan™® Gene Expression assays for Dicer and GAPDH. RT-PCR and qPCR were used to detect miRNA expression in liver metastases by utilizing TaqMan® MicroRNA Reverse Transcription Kit and TaqMan® miRNA Assays. Statistical analyses were performed with STATISTICA.ResultsDicer expression in rectal cancer (3.146 ± 0.953) was higher than in colon cancer (2.703 ± 1.204, P = 0.018). Furthermore the Dicer expression was increased in primary tumours (3.146 ± 0.952) in comparison to that in normal mucosa from rectal cancer patients (2.816 ± 1.009, P = 0.034) but this is not evident in colon cancer patients. Dicer expression in liver metastases was decreased in comparison to that of either normal mucosa or primary tumour in both colon and rectal cancers (P < 0.05). Patients with a high Dicer expression in normal mucosa had a worse prognosis compared to those with a low Dicer expression, independently of gender, age, tumour site, stage and differentiation (P < 0.001, RR 3.682, 95% CI 1.749 - 7.750). In liver metastases, Dicer was positively related to miR-141 (R = 0.419, P = 0.015).ConclusionDicer is up-regulated in the early development of rectal cancers. An increased expression of Dicer mRNA in normal mucosa from CRC patients is significantly related to poor survival independently of gender, age, tumour site, stage and differentiation.
Specification of the myriad of unique neuronal subtypes found in the nervous system depends upon spatiotemporal cues and terminal selector gene cascades, often acting in sequential combinatorial codes to determine final cell fate. However, a specific neuronal cell subtype can often be generated in different parts of the nervous system and at different stages, indicating that different spatiotemporal cues can converge on the same terminal selectors to thereby generate a similar cell fate. However, the regulatory mechanisms underlying such convergence are poorly understood. The Nplp1 neuropeptide neurons in the Drosophila ventral nerve cord can be subdivided into the thoracic-ventral Tv1 neurons and the dorsal-medial dAp neurons. The activation of Nplp1 in Tv1 and dAp neurons depends upon the same terminal selector cascade: col>ap/eya>dimm>Nplp1. However, Tv1 and dAp neurons are generated by different neural progenitors (neuroblasts) with different spatiotemporal appearance. Here, we find that the same terminal selector cascade is triggered by Kr/pdm>grn in dAp neurons, but by Antp/hth/exd/lbe/cas in Tv1 neurons. Hence, two different spatiotemporal combinations can funnel into a common downstream terminal selector cascade to determine a highly related cell fate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.