Social networks can shape many aspects of social and economic activity: migration and trade, job-seeking, innovation, consumer preferences and sentiment, public health, social mobility, and more. In turn, social networks themselves are associated with geographic proximity, historical ties, political boundaries, and other factors. Traditionally, the unavailability of large-scale and representative data on social connectedness between individuals or geographic regions has posed a challenge for empirical research on social networks. More recently, a body of such research has begun to emerge using data on social connectedness from online social networking services such as Facebook, LinkedIn, and Twitter. To date, most of these research projects have been built on anonymized administrative microdata from Facebook, typically by working with coauthor teams that include Facebook employees. However, there is an inherent limit to the number of researchers that will be able to work with social network data through such collaborations. In this paper, we therefore introduce a new measure of social connectedness at the US county level. Our Social Connectedness Index is based on friendship links on Facebook, the global online social networking service. Specifically, the Social Connectedness Index corresponds to the relative frequency of Facebook friendship links between every county-pair in the United States, and between every US county and every foreign country. Given Facebook’s scale as well as the relative representativeness of Facebook’s user body, these data provide the first comprehensive measure of friendship networks at a national level.
We show how data from online social networking services can help researchers better understand the effects of social interactions on economic decision making. We combine anonymized data from Facebook, the largest online social network, with housing transaction data and explore both the structure and the effects of social networks. Individuals whose geographically distant friends experienced larger recent house price increases are more likely to transition from renting to owning. They also buy larger houses and pay more for a given house. Survey data show that these relationships are driven by the effects of social interactions on individuals' housing market expectations. This paper was previously circulated as "Social Networks and Housing Markets." For helpful comments, we are grateful to
and the College ofWilliam and Mary provided helpful comments. We thank Regina Villasmil for truly outstanding and dedicated research assistance. Mahoney and Stroebel thank the Fama-Miller Center at Chicago Booth for financial support. The views expressed are those of the authors alone and do not necessarily reflect those of the Office of the Comptroller of the Currency or the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.