We show that the feasibility of a booking in the European entry‐exit gas market can be decided in polynomial time on single‐cycle networks that are passive, i.e., do not contain controllable elements. The feasibility of a booking can be characterized by solving polynomially many nonlinear potential‐based flow models for computing so‐called potential‐difference maximizing load flow scenarios. We thus analyze the structure of these models and exploit both the cyclic graph structure as well as specific properties of potential‐based flows. This enables us to solve the decision variant of the nonlinear potential‐difference maximization by reducing it to a system of polynomials of constant dimension that is independent of the cycle's size. This system of fixed dimension can be handled with tools from real algebraic geometry to derive a polynomial‐time algorithm. The characterization in terms of potential‐difference maximizing load flow scenarios then leads to a polynomial‐time algorithm for deciding the feasibility of a booking. Our theoretical results extend the existing knowledge about the complexity of deciding the feasibility of bookings from trees to single‐cycle networks.
In this work, we analyze the structural properties of the set of feasible bookings in the European entry-exit gas market system. We present formal definitions of feasible bookings and then analyze properties that are important if one wants to optimize over them. Thus, we study whether the sets of feasible nominations and bookings are bounded, convex, connected, conic, and star-shaped. The results depend on the specific model of gas flow in a network. Here, we discuss a simple linear flow model with arc capacities as well as nonlinear and mixed-integer nonlinear models of passive and active networks, respectively. It turns out that the set of feasible bookings has some unintuitive properties. For instance, we show that the set is nonconvex even though only a simple linear flow model is used.
For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal size of the uncertainty set such that robust feasibility of the MIP can be guaranteed. The approaches for the RRF in the literature are restricted to continuous optimization problems. We first analyze relations between the RRF of a MIP and its continuous linear (LP) relaxation. In particular, we derive conditions under which a MIP and its LP relaxation have the same RRF. Afterward, we extend the notion of the RRF such that it can be applied to a large variety of optimization problems and uncertainty sets. In contrast to the setting commonly used in the literature, we consider for every constraint a potentially different uncertainty set that is not necessarily full-dimensional. Thus, we generalize the RRF to MIPs and to include safe variables and constraints; that is, where uncertainties do not affect certain variables or constraints. In the extended setting, we again analyze relations between the RRF for a MIP and its LP relaxation. Afterward, we present methods for computing the RRF of LPs and of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF. Summary of Contribution: Robust optimization is an important field of operations research due to its capability of protecting optimization problems from data uncertainties that are usually defined via so-called uncertainty sets. Intensive research has been conducted in developing algorithmically tractable reformulations of the usually semi-infinite robust optimization problems. However, in applications it also important to construct appropriate uncertainty sets (i.e., prohibiting too conservative, intractable, or even infeasible robust optimization problems due to the choice of the uncertainty set). In doing so, it is useful to know the maximal “size” of a given uncertainty set such that a robust feasible solution still exists. In this paper, we study one notion of “size”: the radius of robust feasibility (RRF). We contribute on the theoretical side by generalizing the RRF to MIPs as well as to include “safe” variables and constraints (i.e., where uncertainties do not affect certain variables or constraints). This allows to apply the RRF to many applications since safe variables and constraints exist in most applications. We also provide first methods for computing the RRF of LPs as well as of MIPs with safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to the instances in the MIPLIB 2017 for computing the RRF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.