The allylic hydroperoxide 2 (myrtenyl hydroperoxide), available from singlet oxygen photooxygenation of beta-pinene (1), is converted into the azido bis-hydroperoxide 3 by an electron-transfer induced azidyl radical formation and trapping of the initial tertiary carbon radical by triplet oxygen. The azido bis-hydroperoxide 3 is reduced to the azido 1,2-diol 4 or the amino diol 5, respectively. Beside classical fluorescent PET sensitizers such as rhodamines, also nanosized semiconductor particles as well as lucigenin were applied as catalysts. The electron transfer rate of azide oxidation was determined for lucigenin by fluorescence quenching analysis.
Polar meso-tetraarylporphyrins 2-4 were synthesized from tetrakis-4-hydroxyphenylporphyrin 1 as the central building block by consecutive base-induced reactions with glycidol. The decorating units form a polar hydrogen-bonded shell around the sensitizer core which is proposed as the binding site for polar substrates in photocatalyzed oxygenation reactions. As substrate, the polaritysensor mesitylol (5) was applied and the reaction constrained in a polystyrene matrix. Increasing shell dimensions lead to increased diastereoselectivities for the allylic hydroperoxides 6 and thus clearly demonstrate the concept of shell-induced substrate stereoselectivity in singlet oxygen reactions.
Pluronic F-127 hydrogels are highly efficient microenvironments for photochemical reactions, as demonstrated for singlet oxygen reactions of monoalkenes. Nonpolar substrates are localized in the nanosized polymer compartment, which can be visualized by neutron scattering. The efficiency of (1)O(2) reactions is strongly increased for tiglate derivatives and the regioselectivity of the ene reaction of trisubstituted alkenes is completely switched in comparison with solution phase and inverted in comparison with intrazeolite photo-oxygenations.
Carbohydrate-decorated meso-tetraarylporphyrins P-G and P-C were synthesized via Lewis-acid catalyzed condensation of acetylated carbohydrate-substituted benzaldehydes and pyrrole. Their efficiency of singlet oxygen production was compared with the corresponding non-substituted porphyrin. The oxidation of the spin trap molecule TEMP (2,2,6,6-tetramethyl-4-piperidone) by singlet oxygen to TEMPO was measured by ESR spectroscopy, showing higher reaction rates for the sugar porphyrins. These results were corroborate by laser flash photolysis measurements that resulted in higher triplet lifetimes of glucosyl- and cellobiosyl porphyrins in comparison with tetrakis(4-hydroxyphenyl)porphyrin. Low ee was detected in the photooxygenation of ethyl tiglate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.