In vertebrates, symmetric versus asymmetric cleavage of -carotene in the biosynthesis of vitamin A and its derivatives has been controversially discussed. Recently we have been able to identify a cDNA encoding a metazoan ,-carotene-15,15-dioxygenase from the fruit fly Drosophila melanogaster. This enzyme catalyzes the key step in vitamin A biosynthesis, symmetrically cleaving -carotene to give two molecules of retinal. Mutations in the corresponding gene are known to lead to a blind, vitamin A-deficient phenotype. Orthologs of this enzyme have very recently been found also in vertebrates and molecularly characterized. Here we report the identification of a cDNA from mouse encoding a second type of carotene dioxygenase catalyzing exclusively the asymmetric oxidative cleavage of -carotene at the 9,10 double bond of -carotene and resulting in the formation of -apo-10-carotenal and -ionone, a substance known as a floral scent from roses, for example. Besides -carotene, lycopene is also oxidatively cleaved by the enzyme. The deduced amino acid sequence shares significant sequence identity with the ,-carotene-15,15-dioxygenases, and the two enzyme types have several conserved motifs. To establish its occurrence in different vertebrates, we then attempted and succeeded in cloning cDNAs encoding this new type of carotene dioxygenase from human and zebrafish as well. As regards their possible role, the apocarotenals formed by this enzyme may be the precursors for the biosynthesis of retinoic acid or exert unknown physiological effects. Thus, in contrast to Drosophila, in vertebrates both symmetric and asymmetric cleavage pathways exist for carotenes, revealing a greater complexity of carotene metabolism.
Carotenoids are the precursors for vitamin A and are proposed to prevent oxidative damage to cells. Mammalian genomes encode a family of structurally related nonheme iron oxygenases that modify double bonds of these compounds by oxidative cleavage and cis-to-trans isomerization. The roles of the family members BCMO1 and RPE65 for vitamin A production and vision have been well established. Surprisingly, we found that the third family member, β,β-carotene-9',10'-oxygenase (BCDO2), is a mitochondrial carotenoid-oxygenase with broad substrate specificity. In BCDO2-deficient mice, carotenoid homeostasis was abrogated, and carotenoids accumulated in several tissues. In hepatic mitochondria, accumulated carotenoids induced key markers of mitochondrial dysfunction, such as manganese superoxide dismutase (9-fold), and reduced rates of ADP-dependent respiration by 30%. This impairment was associated with an 8- to 9-fold induction of phosphor-MAP kinase and phosphor-AKT, markers of cell signaling pathways related to oxidative stress and disease. Administration of carotenoids to human HepG2 cells depolarized mitochondrial membranes and resulted in the production of reactive oxygen species. Thus, our studies in BCDO2-deficient mice and human cell cultures indicate that carotenoids can impair respiration and induce oxidative stress. Mammalian cells thus express a mitochondrial carotenoid-oxygenase that degrades carotenoids to protect these vital organelles.
Carotenoids are currently investigated regarding their potential to lower the risk of chronic disease and to combat vitamin A deficiency in humans. These plant-derived compounds must be cleaved and metabolically converted by intrinsic carotenoid oxygenases to support the panoply of vitamin A-dependent physiological processes. Two different carotenoid-cleaving enzymes were identified in mammals, the classical carotenoid-15,15-oxygenase (CMO1) and a putative carotenoid-9,10-oxygenase (CMO2). To analyze the role of CMO1 in mammalian physiology, here we disrupted the corresponding gene by targeted homologous recombination in mice. On a diet providing -carotene as major vitamin A precursor, vitamin A levels fell dramatically in several tissues examined. Instead, this mouse mutant accumulated the provitamin in large quantities (e.g. as seen by an orange coloring of adipose tissues). Besides impairments in -carotene metabolism, CMO1 deficiency more generally interfered with lipid homeostasis. Even on a vitamin A-sufficient chow, CMO1 ؊/؊ mice developed a fatty liver and displayed altered serum lipid levels with elevated serum unesterified fatty acids. Additionally, this mouse mutant was more susceptible to high fat diet-induced impairments in fatty acid metabolism. Quantitative reverse transcription-PCR analysis revealed that the expression of peroxisome proliferator-activated receptor ␥-regulated marker genes related to adipogenesis was elevated in visceral adipose tissues. Thus, our study identifies CMO1 as the key enzyme for vitamin A production and provides evidence for a role of carotenoids as more general regulators of lipid metabolism.Dietary lipids are precursors for signaling molecules that control many facets in cell physiology. As the classic example, fat-soluble vitamin A (all-trans-retinol) is essential for processes ranging from development to vision and cell proliferation (1-3). Retinol is the precursor for at least two critical metabolites, 11-cis-retinal, the chromophore of visual G-protein-coupled receptors (4), and retinoic acid (RA).5 Alltrans-RA and 9-cis-RA regulate gene expression via heterodimeric nuclear receptors consisting of an RA receptor and a retinoid X receptor (RXR) (5, 6). Both are ligand-dependent transcription factors belonging to the superfamily of nuclear hormone receptors (7). Additionally, RXRs form heterodimers with other members of the nuclear receptor family (8), including the peroxisome proliferator-activated receptors (PPARs).Because animals, including humans, are unable to synthesize vitamin A de novo, all retinoids (vitamin A and its derivatives) derive from the oxidative cleavage of dietary provitamin A carotenoids, mainly -carotene (9 -11). How this conversion of -carotene occurs (centric and/or eccentric cleavage) is still a matter of debate (12)(13)(14). Recently, two different carotenoidmonooxygenases, CMO1 and CMO2, were molecularly identified in animals, including humans (15). Both belong to a family of structurally related nonheme iron oxygenases, common to all...
The cellular uptake of vitamin A from its RBP4-bound circulating form (holo-RBP4) is a homeostatic process that evidently depends on the multidomain membrane protein STRA6. In humans, mutations in STRA6 are associated with Matthew-Wood syndrome, manifested by multisystem developmental malformations. Here we addressed the metabolic basis of this inherited disease. STRA6-dependent transfer of retinol from RBP4 into cultured NIH 3T3 fibroblasts was enhanced by lecithin:retinol acyltransferase (LRAT). The retinol transfer was bidirectional, strongly suggesting that STRA6 acts as a retinol channel/transporter. Loss-of-function analysis in zebrafish embryos revealed that Stra6 deficiency caused vitamin A deprivation of the developing eyes. We provide evidence that, in the absence of Stra6, holo-Rbp4 provokes nonspecific vitamin A excess in several embryonic tissues, impairing retinoic acid receptor signaling and gene regulation. These fatal consequences of Stra6 deficiency, including craniofacial and cardiac defects and microphthalmia, were largely alleviated by reducing embryonic Rbp4 levels by morpholino oligonucleotide or pharmacological treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.