Carotenoids are currently investigated regarding their potential to lower the risk of chronic disease and to combat vitamin A deficiency in humans. These plant-derived compounds must be cleaved and metabolically converted by intrinsic carotenoid oxygenases to support the panoply of vitamin A-dependent physiological processes. Two different carotenoid-cleaving enzymes were identified in mammals, the classical carotenoid-15,15-oxygenase (CMO1) and a putative carotenoid-9,10-oxygenase (CMO2). To analyze the role of CMO1 in mammalian physiology, here we disrupted the corresponding gene by targeted homologous recombination in mice. On a diet providing -carotene as major vitamin A precursor, vitamin A levels fell dramatically in several tissues examined. Instead, this mouse mutant accumulated the provitamin in large quantities (e.g. as seen by an orange coloring of adipose tissues). Besides impairments in -carotene metabolism, CMO1 deficiency more generally interfered with lipid homeostasis. Even on a vitamin A-sufficient chow, CMO1 ؊/؊ mice developed a fatty liver and displayed altered serum lipid levels with elevated serum unesterified fatty acids. Additionally, this mouse mutant was more susceptible to high fat diet-induced impairments in fatty acid metabolism. Quantitative reverse transcription-PCR analysis revealed that the expression of peroxisome proliferator-activated receptor ␥-regulated marker genes related to adipogenesis was elevated in visceral adipose tissues. Thus, our study identifies CMO1 as the key enzyme for vitamin A production and provides evidence for a role of carotenoids as more general regulators of lipid metabolism.Dietary lipids are precursors for signaling molecules that control many facets in cell physiology. As the classic example, fat-soluble vitamin A (all-trans-retinol) is essential for processes ranging from development to vision and cell proliferation (1-3). Retinol is the precursor for at least two critical metabolites, 11-cis-retinal, the chromophore of visual G-protein-coupled receptors (4), and retinoic acid (RA).5 Alltrans-RA and 9-cis-RA regulate gene expression via heterodimeric nuclear receptors consisting of an RA receptor and a retinoid X receptor (RXR) (5, 6). Both are ligand-dependent transcription factors belonging to the superfamily of nuclear hormone receptors (7). Additionally, RXRs form heterodimers with other members of the nuclear receptor family (8), including the peroxisome proliferator-activated receptors (PPARs).Because animals, including humans, are unable to synthesize vitamin A de novo, all retinoids (vitamin A and its derivatives) derive from the oxidative cleavage of dietary provitamin A carotenoids, mainly -carotene (9 -11). How this conversion of -carotene occurs (centric and/or eccentric cleavage) is still a matter of debate (12)(13)(14). Recently, two different carotenoidmonooxygenases, CMO1 and CMO2, were molecularly identified in animals, including humans (15). Both belong to a family of structurally related nonheme iron oxygenases, common to all...
The cellular uptake of vitamin A from its RBP4-bound circulating form (holo-RBP4) is a homeostatic process that evidently depends on the multidomain membrane protein STRA6. In humans, mutations in STRA6 are associated with Matthew-Wood syndrome, manifested by multisystem developmental malformations. Here we addressed the metabolic basis of this inherited disease. STRA6-dependent transfer of retinol from RBP4 into cultured NIH 3T3 fibroblasts was enhanced by lecithin:retinol acyltransferase (LRAT). The retinol transfer was bidirectional, strongly suggesting that STRA6 acts as a retinol channel/transporter. Loss-of-function analysis in zebrafish embryos revealed that Stra6 deficiency caused vitamin A deprivation of the developing eyes. We provide evidence that, in the absence of Stra6, holo-Rbp4 provokes nonspecific vitamin A excess in several embryonic tissues, impairing retinoic acid receptor signaling and gene regulation. These fatal consequences of Stra6 deficiency, including craniofacial and cardiac defects and microphthalmia, were largely alleviated by reducing embryonic Rbp4 levels by morpholino oligonucleotide or pharmacological treatments.
Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UV/blue and UV/green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently.
The key enzyme responsible for beta-carotene conversion into retinal is beta-carotene 15,15'-monoxygenase (BCMO1). Since it has been reported that the conversion of beta-carotene into vitamin A is highly variable in up to 45% of healthy individuals, we hypothesized that genetic polymorphisms in the BCMO1 gene could contribute to the occurrence of the poor converter phenotype. Here we describe the screening of the total open reading frame of the BCMO1 coding region that led to the identification of two common nonsynonymous single nucleotide polymorphisms (R267S: rs12934922; A379V: rs7501331) with variant allele frequencies of 42 and 24%, respectively. In vitro biochemical characterization of the recombinant 267S + 379V double mutant revealed a reduced catalytic activity of BCMO1 by 57% (P<0.001). Assessment of the responsiveness to a pharmacological dose of beta-carotene in female volunteers confirmed that carriers of both the 379V and 267S + 379V variant alleles had a reduced ability to convert beta-carotene, as indicated through reduced retinyl palmitate:beta-carotene ratios in the triglyceride-rich lipoprotein fraction [-32% (P=0.005) and -69% (P=0.001), respectively] and increased fasting beta-carotene concentrations [+160% (P=0.025) and +240% (P=0.041), respectively]. Our data show that there is genetic variability in beta-carotene metabolism and may provide an explanation for the molecular basis of the poor converter phenotype within the population.
RPE65 is a retinal pigment epithelial protein essential for the regeneration of 11-cis-retinal, the chromophore of cone and rod visual pigments. Mutations in RPE65 lead to a spectrum of retinal dystrophies ranging from Leber's congenital amaurosis to autosomal recessive retinitis pigmentosa. One of the most frequent missense mutations is an amino acid substitution at position 91 (R91W). Affected patients have useful cone vision in the first decade of life, but progressively lose sight during adolescence. We generated R91W knock-in mice to understand the mechanism of retinal degeneration caused by this aberrant Rpe65 variant. We found that in contrast to Rpe65 null mice, low but substantial levels of both RPE65 and 11-cis-retinal were present. Whereas rod function was impaired already in young animals, cone function was less affected. Rhodopsin metabolism and photoreceptor morphology were disturbed, leading to a progressive loss of photoreceptor cells and retinal function. Thus, the consequences of the R91W mutation are clearly distinguishable from an Rpe65 null mutation as evidenced by the production of 11-cis-retinal and rhodopsin as well as by less severe morphological and functional disturbances at early age. Taken together, the pathology in R91W knock-in mice mimics many aspects of the corresponding human blinding disease. Therefore, this mouse mutant provides a valuable animal model to test therapeutic concepts for patients affected by RPE65 missense mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.