Social networks amplify inequalities by fundamental mechanisms of social tie formation such as homophily and triadic closure. These forces sharpen social segregation, which is reflected in fragmented social network structure. Geographical impediments such as distance and physical or administrative boundaries also reinforce social segregation. Yet, less is known about the joint relationships between social network structure, urban geography, and inequality. In this paper we analyze an online social network and find that the fragmentation of social networks is significantly higher in towns in which residential neighborhoods are divided by physical barriers such as rivers and railroads. Towns in which neighborhoods are relatively distant from the center of town and amenities are spatially concentrated are also more socially segregated. Using a two-stage model, we show that these urban geography features have significant relationships with income inequality via social network fragmentation. In other words, the geographic features of a place can compound economic inequalities via social networks.
We use methods from network science to analyze corruption risk in a large administrative dataset of over 4 million public procurement contracts from European Union member states covering the years 2008-2016. By mapping procurement markets as bipartite networks of issuers and winners of contracts we can visualize and describe the distribution of corruption risk. We study the structure of these networks in each member state, identify their cores and find that highly centralized markets tend to have higher corruption risk. In all EU countries we analyze, corruption risk is significantly clustered. However, these risks are sometimes more prevalent in the core and sometimes in the periphery of the market, depending on the country. This suggests that the same level of corruption risk may have entirely different distributions. Our framework is both diagnostic and prescriptive: it roots out where corruption is likely to be prevalent in different markets and suggests that different anti-corruption policies are needed in different countries.Address correspondence to: johannes.wachs@cssh.rwth-aachen.de. This article is based on a chapter of the doctoral dissertation of Johannes Wachs.
Programming is a valuable skill in the labor market, making the underrepresentation of women in computing an increasingly important issue. Online question and answer platforms serve a dual purpose in this field: they form a body of knowledge useful as a reference and learning tool, and they provide opportunities for individuals to demonstrate credible, verifiable expertise. Issues, such as male-oriented site design or overrepresentation of men among the site's elite may therefore compound the issue of women's underrepresentation in IT. In this paper we audit the differences in behavior and outcomes between men and women on Stack Overflow, the most popular of these Q&A sites. We observe significant differences in how men and women participate in the platform and how successful they are. For example, the average woman has roughly half of the reputation points, the primary measure of success on the site, of the average man. Using an Oaxaca-Blinder decomposition, an econometric technique commonly applied to analyze differences in wages between groups, we find that most of the gap in success between men and women can be explained by differences in their activity on the site and differences in how these activities are rewarded. Specifically, 1) men give more answers than women and 2) are rewarded more for their answers on average, even when controlling for possible confounders such as tenure or buy-in to the site. Women ask more questions and gain more reward per question. We conclude with a hypothetical redesign of the site's scoring system based on these behavioral differences, cutting the reputation gap in half.
Corruption is a social plague: gains accrue to small groups, while its costs are borne by everyone. Significant variation in its level between and within countries suggests a relationship between social structure and the prevalence of corruption, yet, large-scale empirical studies thereof have been missing due to lack of data. In this paper, we relate the structural characteristics of social capital of settlements with corruption in their local governments. Using datasets from Hungary, we quantify corruption risk by suppressed competition and lack of transparency in the settlement’s awarded public contracts. We characterize social capital using social network data from a popular online platform. Controlling for social, economic and political factors, we find that settlements with fragmented social networks, indicating an excess of bonding social capital has higher corruption risk, and settlements with more diverse external connectivity, suggesting a surplus of bridging social capital is less exposed to corruption. We interpret fragmentation as fostering in-group favouritism and conformity, which increase corruption, while diversity facilitates impartiality in public life and stifles corruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.